首页> 外文期刊>Solar Energy >Use of physics to improve solar forecast: Physics-informed persistence models for simultaneously forecasting GHI, DNI, and DHI
【24h】

Use of physics to improve solar forecast: Physics-informed persistence models for simultaneously forecasting GHI, DNI, and DHI

机译:物理学的使用改进太阳能预测:物理信息的持久性模型,用于同时预测GHI,DNI和DHI

获取原文
获取原文并翻译 | 示例
           

摘要

Observation-based statistical models have been widely used in forecasting solar energy; however, existing models often lack a clear relation to physics and are limited largely to global horizontal irradiance (GHI) forecasts over relatively short time horizons (1 h). Incorporating physics into observation-based models, increasing forecast time horizons and developing a model system for forecasting not only GHI but also direct normal irradiance (DNI) and diffuse horizontal irradiance (DHI) remain challenging, especially under cloudy conditions because of complex cloud-radiation interactions. This work attempts to address these challenges by developing a hierarchy of four new physics-informed persistence models that can be used to simultaneously forecast GHI, DNI and DHI. The decade-long measurements (1998 to 2014) at the U.S. Department of Energy's Atmospheric Radiation Measurement (ARM)'s Southern Great Plains (SGP) Central Facility site are used to evaluate the performance of the new models. The results show that the new physics-informed forecast models generally outperform the simple and smart persistence models, and improve the forecast accuracy at lead times from 1.25 h up to 6 h. Further analysis reveals that the forecast error is highly related to the error and temporal variability of the assumed cloud predictor. The best model for forecasting different radiative components can be explained by the relationship between solar irradiances and cloud properties.
机译:观察的统计模型已广泛用于预测太阳能;然而,现有模型往往缺乏与物理学的明确关系,并且主要用于全球水平辐照度(GHI)预测相对短的时间(<1小时)。将物理融入基于观察的模型,增加预测时间范围并开发用于预测的模型系统,不仅是GHI,而且也是直接正常的辐照度(DNI)和漫反射水平辐照度(DHI)保持具有挑战性,特别是由于复杂的云辐射而在多云的条件下互动。这项工作试图通过开发四种新物理知情持久模型的层次结构来解决这些挑战,该挑战可用于同时预测GHI,DNI和DHI。在美国能源部大气辐射测量(ARM)南部大平原(SGP)中央设施网站上的十年长测量(1998年至2014)用于评估新车型的性能。结果表明,新的物理知识的预测模型一般优于简单智能持久性模型,并在最高可达6小时的情况下提高了延长时间的预测精度。进一步的分析表明,预测误差与假定云预测器的误差和时间可变性高度相关。可以通过太阳能辐射和云属性之间的关系来解释预测不同辐射组件的最佳模型。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号