...
首页> 外文期刊>Solar Energy >Redox thermochemistry of Ca-Mn-based perovskites for oxygen atmosphere control in solar-thermochemical processes
【24h】

Redox thermochemistry of Ca-Mn-based perovskites for oxygen atmosphere control in solar-thermochemical processes

机译:太阳能热化学工艺中的CA-Mn基钙质钙钛矿氧化锰热化学

获取原文
获取原文并翻译 | 示例

摘要

Sustainable energy supply is a crucial issue in times of climate change and receding fossil energy reserves. The emerging field of solar-driven thermochemical H2O and CO2 splitting cycles is a very promising approach to address this challenge. Providing low oxygen partial pressures is crucial in these processes. This issue is tackled by either high vacuum pumping or inert-gas sweeping. Both techniques come with a rather high energy penalty, leading to lower efficiencies of the whole process. Thermochemical oxygen pumping offers great potential to efficiently reduce oxygen partial pressures in these splitting cycles. In this work a material investigation campaign focusing on earth-abundant, cheap and non-toxic perovskites is presented. The experimental results are complemented with an approach to correlate this performance to inherent material properties, and in particular to the tolerance factor. In this framework, Ca-Mn-based perovskite compositions were demonstrated to function effectively as combined thermochemical oxygen-pumping and energy storage materials. Not only an almost two-fold increase of the reduction extent of ceria as a water splitting material was achieved due to the operation of perovskites as oxygen pumping materials, but this increase was rendered three-fold by applying a suitable temperature swing operation strategy. In parallel, the perovskites' energy storage density can be significantly increased by exploiting specific phase transitions that can be rationally explained via the Goldschmidt tolerance factor. Hence, the work offers a novel approach to reach low oxygen partial pressures with minimal energy penalties and a derived model to evaluate occurring phase transitions and their corresponding heat effects.
机译:可持续的能源供应是气候变化和后退化石能量储备时的至关重要问题。太阳能驱动的热化学H2O和CO2分裂周期的新兴领域是一种非常有希望的方法来解决这一挑战。提供低氧分压在这些过程中至关重要。通过高真空泵送或惰性气体扫描来解决这个问题。这两种技术都具有相当高的能源惩罚,导致整个过程的效率降低。热化学氧气泵送能够有效地降低这些分裂循环中的氧气部分压力。在这项工作中,提出了重点放在地球上,廉价和无毒的佩罗夫斯斯基斯的重大调查活动。实验结果辅以与固有材料特性相关的方法,尤其是耐受因子。在该框架中,基于Ca-Mn的钙钛矿组合物被证明有效地作为组合的热化学氧气泵和储能材料。不仅由于钙锌矿作为氧气泵浦材料的操作而作为水分裂材料的差异作为水分裂材料的减少程度的几乎两倍增加,但通过施加合适的温度摆动操作策略,这种增加是三倍的。并行地,通过利用可以通过Goldschmidt耐受因子的合理解释的特定相变性来显着增加钙钛矿的能量存储密度。因此,该工作提供了一种新的方法来实现具有最小能量惩罚和衍生模型的低氧局部压力,以评估发生的相变及其相应的热效应。

著录项

  • 来源
    《Solar Energy 》 |2020年第3期| 612-622| 共11页
  • 作者单位

    Deutsch Zentrum Luft & Raumfahrt Inst Solar Res German Aerosp Ctr DLR D-51147 Cologne Germany|Tech Univ Dresden Fac Mech Sci & Engn Inst Power Engn Solar Fuel Prod D-01062 Dresden Germany;

    Deutsch Zentrum Luft & Raumfahrt Inst Solar Res German Aerosp Ctr DLR D-51147 Cologne Germany;

    Deutsch Zentrum Luft & Raumfahrt Inst Solar Res German Aerosp Ctr DLR D-51147 Cologne Germany|Tech Univ Dresden Fac Mech Sci & Engn Inst Power Engn Solar Fuel Prod D-01062 Dresden Germany;

    Natl Ctr Sci Res Demokritos Inst Nanosci & Nanotechnol Aghia Paraskevi 15341 Attica Greece;

    Deutsch Zentrum Luft & Raumfahrt Inst Solar Res German Aerosp Ctr DLR D-51147 Cologne Germany;

    Deutsch Zentrum Luft & Raumfahrt Inst Solar Res German Aerosp Ctr DLR D-51147 Cologne Germany;

    Deutsch Zentrum Luft & Raumfahrt Inst Solar Res German Aerosp Ctr DLR D-51147 Cologne Germany|Tech Univ Dresden Fac Mech Sci & Engn Inst Power Engn Solar Fuel Prod D-01062 Dresden Germany;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Thermochemical cycles; Redox oxides; Perovskites; Thermochemical oxygen pumping; Thermochemical storage;

    机译:热化学循环;氧化还原氧化物;Perovskites;热化学氧气泵送;热化学储存;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号