...
首页> 外文期刊>Solar Energy >Verification of optical modelling of sunshape and surface slope error for concentrating solar power systems
【24h】

Verification of optical modelling of sunshape and surface slope error for concentrating solar power systems

机译:聚光太阳能系统太阳形状和表面坡度误差光学模型的验证

获取原文
获取原文并翻译 | 示例
           

摘要

Sunshape and reflector surface slope error distributions are significant elements in modelling the optical behaviour of a concentrating solar power system. Different optical modelling tools implement these elements with various approaches. Discrepancies can easily accumulate in simulations of a large optical system as a result of incorrect implementations. This study reviews and verifies the implementations of these two factors in six tools that are widely used for optical modelling in solar energy research: Tonatiuh, SolTrace, Tracer, Solstice, Heliosim and SolarPILOT. The review incorporates three rounds of tests. Firstly, basic tests examine each factor carefully in simplified on-axis reflector-target configurations (round 'A'). Secondly, off-axis effects are introduced (round 'B'). Thirdly, full heliostat field simulations are verified (round 'C'). All of the test cases are simulated with each modelling tool, and results are compared. Discrepancies were observed due to approximations inherent in the cone optics (convolution) methods, incorrect implementation the of pillbox slope errors, different approaches to setting the circumsolar ratio for the Buie sunshape, and different approaches to the calculation of blocking and shading losses in some tools. All issues are discussed fully, and solutions to most issues were implemented within the scope of the present study. Some remaining issues are noted. The study highlights the importance of careful implementation of these aspects of optical modelling and contributes to an improvement in the quality of several widely-used tools.
机译:在对聚光太阳能系统的光学行为进行建模时,Sunshape和反射器表面坡度误差分布是重要因素。不同的光学建模工具通过各种方法来实现这些元素。由于实施不正确,在大型光学系统的仿真中差异很容易累积。这项研究在太阳能研究中广泛用于光学建模的六个工具(Tonatiuh,SolTrace,Tracer,Solstice,Heliosim和SolarPILOT)中,对这两个因素的实现进行了审查和验证。审查包括三轮测试。首先,基本测试在简化的同轴反射器目标配置(“ A”级)中仔细检查了每个因素。其次,引入离轴效应(“ B”轮)。第三,验证了完整的定日镜场模拟(“ C”轮)。使用每个建模工具对所有测试用例进行仿真,然后比较结果。观察到差异是由于锥光学(卷积)方法固有的近似性,药盒坡度误差的错误实现,为Buie sunshape设置周长比的不同方法以及某些工具中计算遮挡和阴影损失的不同方法。所有问题都进行了充分讨论,并且在本研究范围内实施了大多数问题的解决方案。指出了一些剩余的问题。该研究强调了仔细实施光学建模这些方面的重要性,并有助于提高几种广泛使用的工具的质量。

著录项

  • 来源
    《Solar Energy》 |2020年第1期|461-474|共14页
  • 作者

  • 作者单位

    Australian Natl Univ Res Sch Elect Energy & Mat Engn Canberra ACT Australia;

    CSIRO Energy Newcastle NSW Australia;

    Natl Renewable Energy Lab Golden CO USA;

    CNRS PROMES Proc Mat & Solar Energy Lab Ft Romeu Odeillo France;

    Meso Star Toulouse France;

    Cyprus Inst EEWRC Nicosia Cyprus;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Optical modelling; Verification; Sunshape; Surface slope error; Monte Carlo ray tracing; Cone optics;

    机译:光学建模;验证;太阳形状表面坡度误差;蒙特卡洛射线追踪;圆锥光学;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号