首页> 外文期刊>Soils and foundations >Verification of a macro-element method in the numerical simulation of the pore water pressure dissipation method - A case study on a liquefaction countermeasure with vertical drains under an embankment
【24h】

Verification of a macro-element method in the numerical simulation of the pore water pressure dissipation method - A case study on a liquefaction countermeasure with vertical drains under an embankment

机译:孔隙水压力耗散法数值模拟中宏单元法的验证-以路堤下竖向排水的液化对策为例

获取原文
获取原文并翻译 | 示例
           

摘要

In the simulation of the vertical drain method using a soil-water coupled finite element analysis, a macro-element method has often been used as an approximate method to introduce the water absorption functions of drains into individual elements. In order to extend the function of this method, the authors modified the formula of the flow coefficient from soil to drains and introduced the discharge function of vertical drains to the method by treating the water pressure in the drains as an unknown and adding a continuity equation for the drains to the governing equations. The first attempt made it possible to divide a finite element mesh independently of the drain arrangement and the drain spacing, and the second attempt enabled the well resistance to be automatically generated by a series of calculations depending on the given conditions. Furthermore, although the macro-element method has been applied to quasi-static problems in most cases, the authors applied the expanded one to dynamic problems by equipping it with the soil-water coupled finite deformation analysis code GEOASIA with the inertial term. In this paper, in order to verify the new macro-element method in a dynamic problem, the results of a 2D approximate model using the new macro-element method were compared with those of a 3D exact model where vertical drains were exactly represented by finely dividing the finite element mesh in the case of a sand ground improved by the pore water pressure dissipation method under the embankment. The findings of this study are as follows: (1) 2D mesh-based analyses under plane strain conditions, using the new macro-element method, can accurately approximate 3D mesh-based analyses with a fine mesh in dynamic problems in terms of changes in the excess pore water pressure and ground deformation; (2) the new macro-element method can adequately evaluate the influence of drain spacing on a countermeasure for liquefaction in the quantitative sense, while using a single mesh; and (3) the new macro-element method improves the calculation efficiency in the simulation of the pore water pressure dissipation method by laborsaving in mesh-dividing and dramatically reducing the calculation time. (C) 2017 Production and hosting by Elsevier B.V.
机译:在使用土壤-水耦合有限元分析的垂直排水方法的模拟中,经常使用宏观元素方法作为近似方法,将排水的吸水功能引入各个元素中。为了扩展该方法的功能,作者修改了从土壤到排水沟的流量系数公式,并通过将排水沟中的水压视为未知数并添加连续性方程,将垂直排水沟的排水功能引入了该方法。用于控制方程式的排水管。第一次尝试可以将有限元网格划分为独立于漏极布置和漏极间距的情况,而第二次尝试则可以根据给定条件通过一系列计算自动生成阱电阻。此外,尽管在大多数情况下,宏单元方法已应用于准静态问题,但作者通过将扩展单元配备有惯性项的土-水耦合有限变形分析代码GEOASIA,将其应用于动态问题。在本文中,为了验证动态问题中的新宏单元方法,将使用新宏单元方法的2D近似模型的结果与精确地表示垂直排水口的3D精确模型的结果进行了比较。在路堤下通过孔隙水压力耗散法改进的砂土情况下,划分有限元网格。这项研究的结果如下:(1)在平面应变条件下基于2D网格的分析,使用新的宏单元方法,可以根据动态变化中的细小网格准确地近似基于3D网格的分析。多余的孔隙水压力和地面变形; (2)新的宏观元素方法可以在单个网格上定量地评估排水间距对液化对策的影响; (3)新的宏单元法通过节省网格划分的劳动量,大大提高了孔隙水压力耗散方法模拟的计算效率,并大大减少了计算时间。 (C)2017年Elsevier B.V.的制作和托管

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号