首页> 外文期刊>Soil Science Society of America Journal >Stabilization of Fertilizer Nitrogen-15 into Humic Substances in Aerobic vs. Waterlogged Soil Following Straw Incorporation
【24h】

Stabilization of Fertilizer Nitrogen-15 into Humic Substances in Aerobic vs. Waterlogged Soil Following Straw Incorporation

机译:秸秆还田后需氧土壤与淹水土壤中氮15肥料稳定为腐殖质

获取原文
获取原文并翻译 | 示例
           

摘要

This study was undertaken to investigate and quantify the interactive effects of flooding and straw incorporation on key microbial processes, principally stabilization of fertilizer N into various soil organic matter (SOM) pools. The fate of fertilizer 15N in a paddy soil was examined at 5, 15, and 25°C, with and without rice (Oryza sativa L.) straw added, and under flooded and nonflooded conditions. After a 160-d incubation, three fractions of the SOM were separated and defined as directly alkali-extractable humic substances (DAEHS), reducible metal-bound humic substances (RMBHS), and non-alkali-extractable organic matter (NAEOM). The DAEHS had the highest percentage, up to 50%, of fertilizer 15N recovered at 160 d, indicating that this SOM fraction was the most dynamic fraction of the SOM. On the other hand, the RMBHS is considered the least dynamic pool, containing up to 12% fertilizer 15N after 160 d. The NAEOM was surprisingly highly enriched, up to 28% fertilizer 15N, and showed a significant treatment effect, suggesting that some active components of N cycling were present in this SOM fraction. The addition of rice straw increased the recovery of fertilizer 15N in the above SOM fractions. Flooding significantly reduced the stabilization of fertilizer N compared with the nonflooded treatment. Indices of recalcitrance of the stabilized N confirm that the soil N supply capacity does not decrease with flooding. The total alkali-extractable organic matter (AEOM = DAEHS + RMBHS), as the NAEOM, appears to be a complex and dynamic mixture of potentially mineralizable and recalcitrant forms of N. Our data show that long-term N availability and stabilization into humic fractions is a function of rice residue input and temperature; however, the effects of residue and temperature are inversely related. With increase in temperature of incubation, less fertilizer N becomes stabilized into humic fractions, presumably from increased microbial activity, microbial consumption of potential humic precursors (N-containing precursors of humic substances turned over faster at higher temperatures), and/or formation of different end-products with less humification potential.
机译:这项研究旨在调查和量化水淹和秸秆掺入对关键微生物 过程的交互作用,主要是将肥料N稳定化成各种 土壤。有机物(SOM)库。在5、15和25°C的条件下,在不加稻米和不加稻米的情况下,对稻田中肥料 15 N 的去向进行了研究(Oryza sativa L.)添加了秸秆,并且在水淹 和非水淹条件下。孵育160天后,分离出SOM的三部分 并定义为直接碱提取的 腐殖质(DAEHS),可还原的金属结合腐殖质 (RMBHS)和不可碱提取的有机物(NAEOM)。 DAEHS占肥料 15 N在160 d时恢复,表明此SOM分数是 最活跃的SOM分数。另一方面, RMBHS被认为是最不动态的池,在160 d后最多包含 12%肥料 15 N。令人惊讶的是,NAEOM高度富含 ,肥料中的 15 N含量高达28%,并显示出显着的 处理效果,表明<此SOM分数中存在sup> N循环。添加 稻草可提高上述 SOM馏分中肥料 15 N的回收率。与未淹水处理相比,淹水显着降低了肥料氮的稳定 。稳定氮的顽固性指数 证实,土壤N 的供应量不会随洪水而降低。总碱可萃取物 (AEOM = DAEHS + RMBHS),作为NAEOM,似乎是 的复杂动态混合物,可能是可矿化的 和顽固形式的N。我们的数据表明,长期N 的有效性和稳定化为腐殖质部分是稻渣输入和温度的函数。但是,残渣和温度的影响 却成反比。随着孵化温度的升高,更少的肥料氮稳定化为腐殖质部分,这可能是由于潜在的腐殖质前体的微生物活性增加,微生物消耗量增加所致。( 腐殖质的含氮 前体在更高的 温度下翻转更快,和/或形成的腐殖化潜能较小的不同最终产物。

著录项

  • 来源
    《Soil Science Society of America Journal》 |2001年第2期|499-510|共12页
  • 作者单位

    University of California, Department of Land, Air and Water Resources, One Shields Ave., Davis, CA 95616-8627;

    University of California, Department of Land, Air and Water Resources, One Shields Ave., Davis, CA 95616-8627;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号