...
首页> 外文期刊>Soil Dynamics and Earthquake Engineering >Convergence analyses of different modeling schemes for generalized Lippmann-Schwinger integral equation in piecewise heterogeneous media
【24h】

Convergence analyses of different modeling schemes for generalized Lippmann-Schwinger integral equation in piecewise heterogeneous media

机译:分段异构介质中广义Lippmann-Schwinger积分方程不同建模方案的收敛性分析

获取原文
获取原文并翻译 | 示例

摘要

For wave propagation simulation in piecewise heterogeneous media, Caussian-elimination-based full-waveform solutions to the generalized Lippmann-Schwinger integral equation (GLSIE) are highly accurate, but involved with extremely time-consuming computations because of the very large size of the resulting boundary-volume integral equation matrix to be inverted. Several flexible approximations to the GLSIE are scaled in an iterative way to adapt numerical solutions to the smoothness of heterogeneous media in terms of incident wavelengths, with a great saving of computing time and memory. Among various typical iterative schemes to the GLSIE matrix, the generalized minimal residual method (GMRES) is an efficient approach to reduce the computational intensity to some degree. The most efficient approximation can be obtained using a Born series, as an alternative iterative solution, to both the boundary-scattering and volume-scattering waves, leading to the Born-series approximation (BSA) scheme and the improved Born-series approximation (IBSA) scheme. These iteration schemes are validated by dimensionless frequency responses to a heterogeneous semicircular alluvial valley, and then applied to a heterogeneous multilayered model by calculating synthetic seismograms to evaluate approximation accuracies. Numerical experiments, compared with the full-waveform numerical solution, indicate that the convergence rates of these methods decrease gradually with increasing velocity perturbations. The comparison also shows that the BSA scheme has a faster convergence than the GMRES method for velocity perturbations less than 10 percent, but converges slowly and even hardly achieves convergence for velocity perturbations greater than 15 percent. The IBSA scheme gives a superior performance over the other methods, with the least iterations to achieve the necessary convergence.
机译:对于分段异构介质中的波传播仿真,广义Lippmann-Schwinger积分方程(GLSIE)的基于高斯消除的全波形解非常准确,但由于结果的尺寸很大,因此涉及非常耗时的计算边界体积积分方程矩阵求逆。 GLSIE的几种灵活近似值以迭代方式进行缩放,以使数值解决方案在入射波长方面适应异构介质的平滑度,从而大大节省了计算时间和内存。在针对GLSIE矩阵的各种典型迭代方案中,广义最小残差法(GMRES)是一种在某种程度上降低计算强度的有效方法。使用波恩级数作为边界迭代和体积散射波的替代迭代解决方案,可以获得最有效的近似值,从而导致波恩级数逼近(BSA)方案和改进的波恩级数逼近(IBSA) )方案。这些迭代方案通过对非均质半圆形冲积谷的无量纲频率响应进行验证,然后通过计算合成地震图以评估近似精度,将其应用于非均质多层模型。与全波形数值解相比,数值实验表明,这些方法的收敛速度随着速度扰动的增加而逐渐减小。比较还表明,对于速度扰动小于10%的BSA方案,其收敛速度比GMRES方法快,但对于速度扰动大于15%的算法,收敛速度较慢,甚至很难收敛。与其他方法相比,IBSA方案具有更高的性能,迭代次数最少,可以实现必要的收敛。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号