首页> 外文期刊>Soil Dynamics and Earthquake Engineering >Cyclic secant shear modulus versus pore water pressure in sands at small cyclic strains
【24h】

Cyclic secant shear modulus versus pore water pressure in sands at small cyclic strains

机译:小循环应变下砂土的循环割线剪切模量与孔隙水压力的关系

获取原文
获取原文并翻译 | 示例
           

摘要

Cyclic strain-controlled behavior of fully saturated sands in undrained condition is analyzed at small cyclic shear strain amplitudes, gamma(c), around the threshold shear strain for cyclic pore water pressure buildup, gamma(tp) approximate to 0.01%. The cyclic triaxial and simple shear test results obtained in the past by different researchers and the results of new cyclic simple shear tests reveal that: (i) at very small gamma(c) below gamma(tp) where there is no buildup of cyclic pore water pressure, Delta u(N), with the number of cycles, N, the cyclic secant shear modulus, G(SN), initially increases with N for 10-20% of its initial value G(S1) and then levels off or just slightly decreases, (ii) at small gamma(c) between gamma(tp) approximate to 0.01% and 0.10-0.15%, Delta u(N) continuously increases with N while the modulus G(SN) first increases for up to 10% of G(S1) and then gradually decreases, and (iii) at gamma(c) larger than approximately 0.15%, relatively large Delta u(N) develops with N while the modulus G(SN) constantly and significantly decreases. This means that at gamma(c) between gamma(tp) and 0.10-0.15% the sand stiffness initially increases with N in spite of the reduction of effective stresses caused by the cyclic pore water pressures buildup. In this range of gamma(c), the pore water pressure Delta u(N) can reach up to 40% of the initial effective confining stress before G(SN) drops below G(S1). The microstructural mechanisms believed to be responsible for such a complex behavior are discussed. It is suggested that during cyclic loading the changes at mineral-to-mineral junctions of grain contacts can cause soil stiffening while, at the same time, the buildup of cyclic pore water pressure causes the softening. (C) 2014 Elsevier Ltd. All rights reserved.
机译:在较小的循环剪切应变幅度gamma(c)周围,循环孔隙水压力累积的阈值剪切应变gamma(tp)约为0.01%的情况下,分析了不排水条件下完全饱和砂土的循环应变控制行为。过去由不同的研究人员获得的循环三轴和简单剪力试验结果以及新的循环简单剪力试验的结果表明:(i)在γ(tp)以下非常小的γ(c)且没有循环孔隙的形成水压Delta u(N)随循环数N(循环割线剪切模量G(SN))的增加,最初随N增大,其值为初始值G(S1)的10-20%,然后趋于稳定或只是略微降低,(ii)在伽玛(tp)介于约0.01%和0.10-0.15%之间的小伽玛(c)时,δu(N)随N连续增加,而模量G(SN)首先增加达10 G(S1)的百分比逐渐减小,并且(iii)在大于约0.15%的g(c)处,随着N形成相对较大的Delta u(N),而模量G(SN)持续且显着降低。这意味着,尽管循环孔隙水压力增加导致有效应力降低,但在gamma(c)介于gamma(tp)和0.10-0.15%之间时,砂刚度最初随N增加。在此范围内,孔隙水压力Delta u(N)可以达到G(SN)降至G(S1)以下之前初始有效约束应力的40%。讨论了负责这种复杂行为的微观机制。建议在循环加载过程中,谷物接触的矿物-矿物交界处的变化会导致土壤变硬,同时循环孔隙水压力的增加也会导致软化。 (C)2014 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号