首页> 外文期刊>SIAM Journal on Discrete Mathematics >A ROBUST KHINTCHINE INEQUALITY, AND ALGORITHMS FOR COMPUTING OPTIMAL CONSTANTS IN FOURIER ANALYSIS AND HIGH-DIMENSIONAL GEOMETRY
【24h】

A ROBUST KHINTCHINE INEQUALITY, AND ALGORITHMS FOR COMPUTING OPTIMAL CONSTANTS IN FOURIER ANALYSIS AND HIGH-DIMENSIONAL GEOMETRY

机译:傅立叶分析和高维几何中的鲁棒金辛不等式和最优常数计算算法

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

This paper makes two contributions towards determining some well-studied optimal constants in Fourier analysis of Boolean functions and high-dimensional geometry. It has been known since 1994 [C. Gotsman and N. Linial, Combinatorica, 14 (1994), pp. 35-50] that every linear threshold function (LTF) has a squared Fourier mass of at least 1/2 on its degree-0 and degree-1 coefficients. Let the minimum such Fourier mass be W-<= 1[LTF], where the minimum is taken over all n-variable LTFs and all n >= 0. Benjamini, Kalai, and Schramm [Publ. Math. Inst. Hautes Etudes Sci., 90 (1999), pp. 5-43] conjectured that the true value of W-<= 1[LTF] is 2/pi. We make progress on this conjecture by proving that W-<= 1[LTF] >= 1/2 + c for some absolute constant c > 0. The key ingredient in our proof is a "robust" version of the well-known Khintchine inequality in functional analysis, which we believe may be of independent interest. Let W-<= 1[LTFn] denote the minimum squared Fourier mass on the degree-0 and degree-1 coefficients of any n-variable LTF. We prove that for every eta > 0, there is a value K = K(eta) = poly(1/eta)such that W-<= 1[LTF] <= W-<= 1[LTFK] <= W-< 1[LTF] + eta. This easily yields an algorithm that runs in time 2(poly(1/eta)) and determines the value of W= 1[LTF] up to an additive error of +/-eta. We give an analogous structural result, and a similar 2(poly(1/eta))-time algorithm, to determine Tomaszewski's constant to within an additive error of +/-eta; this is the minimum (over all origin-centered hyperplanes H) fraction of points in {-1, 1}(n) that lie within a Euclidean distance 1 of H. Tomaszewski's constant is conjectured to be 1/2; lower bounds on it have been given by Holzman and Kleitman [Combinatorica, 12 (1992), pp. 303-316] and independently by Ben-Tal, Nemirovski, and Roos [SIAM J. Optim., 13 (2002), pp. 535-560]. Our structural results combine tools from anticoncentration of sums of independent random variables, Fourier analysis, and Hermite analysis of LTFs.
机译:本文对确定布尔函数和高维几何的傅立叶分析中一些经过充分研究的最佳常数做出了两个贡献。自1994年以来就已知道[C. Gotsman和N. Linial,Combinatorica,14(1994),第35-50页],每个线性阈值函数(LTF)的0度和1度系数的傅立叶质量平方至少为1/2。令这种傅立叶质量的最小值为W-<= 1 [LTF],其中最小值适用于所有n个变量LTF,所有n> = 0。数学。研究所Hautes Etudes Sci。,90(1999),第5-43页]推测W-<= 1 [LTF]的真实值为2 / pi。通过证明W-<= 1 [LTF]> = 1/2 + c对于某个绝对常数c> 0,我们在此猜想上取得了进展。我们证明的关键要素是著名的Khintchine的“健壮”版本功能分析中的不平等,我们认为这可能与独立利益有关。令W-<= 1 [LTFn]表示任何n变量LTF的0度和1度系数的最小平方傅立叶质量。我们证明对于每个eta> 0,都有一个值K = K(eta)= poly(1 / eta)使得W-<= 1 [LTF] <= W-<= 1 [LTFK] <= W- <1 [LTF] + eta。这很容易得出一种算法,该算法在时间2(poly(1 / eta))中运行,并确定W = 1 [LTF]的值,直到加法误差为+/- eta。我们给出相似的结构结果和相似的2(poly(1 / eta))时间算法,以确定Tomaszewski常数在加法误差+/- eta之内;这是{-1,1}(n)中位于H的欧几里得距离1之内的点的最小分数(在所有以原点为中心的超平面H上)。Tomaszewski常数被推测为1/2; Holzman和Kleitman [Combinatorica,12(1992),pp。303-316]以及Ben-Tal,Nemirovski和Roos独立地提出[SIAM J. Optim。,13(2002),pp。109]。 535-560]。我们的结构结果结合了来自独立随机变量和的反集中,傅立叶分析和LTF的Hermite分析的工具。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号