首页> 外文期刊>Ships and offshore structures >Numerical study for critical fluid velocity in temperature-dependent pipes conveying fluid mixed with nanoparticles using higher order shear deformation theory
【24h】

Numerical study for critical fluid velocity in temperature-dependent pipes conveying fluid mixed with nanoparticles using higher order shear deformation theory

机译:使用高阶剪切变形理论对与纳米颗粒混合流体输送温度的管道中临界流体速度的数值研究

获取原文
获取原文并翻译 | 示例
           

摘要

The pipelines are widely used in offshore oil and gas transportation which are undergoing instabilities generated by the internal fluid. This paper deals with the critical fluid velocity analysis of concrete pipes conveying viscous fluid-nanoparticle mixture. The structure is subjected to thermal load and the material properties are considered temperature-dependent. The well-known Navier-Stokes equation is used for obtaining the applied force of fluid to the concrete pipe. The fluid is mixed by AL(2)O(3) nanoparticles where the mixture rule is used for obtaining the effective density and viscosity. Based on higher order shear deformation theory of cylindrical shells, the displacement field of the pipe is considered. Utilising the energy method and Hamilton's principal, the motion equations are derived. The Galerkin method is applied for obtaining the critical fluid velocity of the structure. The effects of different parameters such as fluid velocity, volume per cent of nanoparticle in fluid, geometrical parameters of the pipe and temperature gradient are discussed on the critical fluid velocity of the structure. Numerical results indicate that with increasing the volume per cent of nanoparticle in fluid, the critical fluid velocity increase.
机译:该管道广泛用于海上石油和天然气运输,这些管道正在经历由内部流体产生的不稳定性。本文研究了输送粘性流体-纳米颗粒混合物的混凝土管道的临界流体速度分析。该结构承受热负荷,并且材料特性被认为是温度依赖性的。众所周知的Navier-Stokes方程用于获得流体对混凝土管的作用力。流体通过AL(2)O(3)纳米颗粒混合,其中使用混合规则来获得有效的密度和粘度。基于圆柱壳的高阶剪切变形理论,考虑了管道的位移场。利用能量法和汉密尔顿原理,推导了运动方程。 Galerkin方法用于获得结构的临界流体速度。讨论了诸如流体速度,流体中纳米粒子的体积百分比,管道的几何参数以及温度梯度等不同参数对结构临界流体速度的影响。数值结果表明,随着流体中纳米颗粒体积百分比的增加,临界流体速度也会增加。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号