首页> 外文期刊>Sensors and Actuators >Developing a non-optical platform for impact dynamics analysis on nanostructured superhydrophobic surfaces using a quartz crystal microbalance
【24h】

Developing a non-optical platform for impact dynamics analysis on nanostructured superhydrophobic surfaces using a quartz crystal microbalance

机译:使用石英晶体微量天平开发用于纳米结构超疏水表面冲击动力学分析的非光学平台

获取原文
获取原文并翻译 | 示例
           

摘要

Quantitative analysis of water droplet behavior under dynamic conditions is one of the critical challenges for applications of wettability-controlled surfaces. Currently, various optical analysis techniques have been employed to analyze impact dynamics. Despite the convenience of direct observation of water droplets, most of these techniques have limited applicability to microscopic and quantitative investigations. In an effort to overcome these limitations, here, we suggest a complementary analysis platform using a quartz crystal microbalance (QCM) to study impact dynamics. A high-speed camera and QCM were applied together to study the behavior of water droplets that impact wettability-controlled surfaces with variousWenumbers (Weber number). For these experiments, ZnO nanowire surfaces were prepared and chemically modified by alkyl-thiol molecules with various carbon chain lengths (C0–C12) to control the surface energy. For nanowire surfaces with high surface energies (C0–C6) and for the lowest surface energy sample (C18), both methods exhibited highly consistent impact dynamics, showing stable wetting and dewetting properties, respectively. In addition to these apparent behaviors, QCM was further able to provide detailed microscopic information regarding the penetration and deformation of water droplets in a quantitative way based on acoustic sensing. More interestingly, QCM was able to determine the metastable water repellency of a C12-modified surface with a highWenumber, which could not be detected by the high-speed camera. These results suggest the significant potential of QCM as a new platform to analyze the impact dynamics of water dropletsviaquantitative, microscopic investigations.
机译:在动态条件下对水滴行为进行定量分析是应用可湿性控制表面的关键挑战之一。当前,已经采用了各种光学分析技术来分析冲击动力学。尽管直接观察水滴很方便,但大多数这些技术在微观和定量研究中的适用性有限。为了克服这些限制,在这里,我们建议使用石英晶体微量天平(QCM)的互补分析平台来研究冲击动力学。一起使用高速相机和QCM来研究水滴的行为,这些水滴以不同的Wenumber(韦伯数)影响润湿性受控的表面。对于这些实验,制备了ZnO纳米线表面,并通过具有各种碳链长度(C0–C12)的烷基硫醇分子进行了化学修饰,以控制表面能。对于具有高表面能(C0–C6)的纳米线表面和具有最低表面能样品(C18)的两种方法,这两种方法均显示出高度一致的冲击动力学,分别显示出稳定的润湿和反润湿特性。除了这些明显的行为外,QCM还能够基于声音感应以定量方式提供有关水滴渗透和变形的详细微观信息。更有趣的是,QCM能够确定具有高Wenumber的C12改性表面的亚稳拒水性,而这是高速相机无法检测到的。这些结果表明,通过定量,微观研究,QCM作为分析水滴冲击动力学的新平台具有巨大潜力。

著录项

  • 来源
    《Sensors and Actuators》 |2018年第6期|595-602|共8页
  • 作者单位

    Surface Chemistry Laboratory of Electronic Materials, Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH);

    Smart Materials and Sensors Laboratory, Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH);

    Smart Materials and Sensors Laboratory, Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH);

    Surface Chemistry Laboratory of Electronic Materials, Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH);

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Superhydrophobic; Quartz crystal microbalance; Impact dynamics; Water-repellency; Zinc-oxide nanowires;

    机译:超疏水;石英晶体微天平;冲击动力学;疏水性;氧化锌纳米线;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号