首页> 外文期刊>Sensors and Actuators >Development and automation of microelectromechanical systems-based biochip platform for protein assay
【24h】

Development and automation of microelectromechanical systems-based biochip platform for protein assay

机译:基于微机电系统的生物芯片蛋白质分析平台的开发与自动化

获取原文
获取原文并翻译 | 示例
           

摘要

Miniaturized devices (lab-on-a-chip) for performing laboratory operations on microscale are appealing. Low sample requirement is one of the major advantages of these devices, therefore less costs is needed for running such platforms and also fewer wastes to be handled. Together with the unique behavior of liquids on microscale facilitating control of molecular diffusion and interaction makes miniaturized devices particularly useful in chemical synthesis as well as biological and/or chemical analysis. In this report, we designed a microfluidic platform with programmable microvalves capable to carry out routine operations. This platform was further optimized to contain universal sample-processing capabilities, using a three-layered hybrid PDMS-PDMS-glass structure. Precise programmable control of the volumetric flow rate can be achieved via the discrete digital control of fluids in pneumatically actuated microvalves. The specific protocols of the system are optical path platforms consisting of MEMS combined with SU-8 arrays in microfluidic reactors for parallel biological analysis. To demonstrate the programming capabilities for biomolecular assay integration, we developed an automated assay with streptavidin immobilized on the SU-8 patterned surface; these optical microfluidic platforms featured with a low sample requirement (0.5 μl per single assay) were then employed as a protein sensor, which has working concentrations ranged from 39.3 to 2500 nM for detecting biotin in the sample solution. The results suggest potential applications of these platforms in either routine assay purposes or specific applications such as high-throughput screening of protein-protein and protein-ligand interactions.
机译:用于进行微型规模实验室操作的小型设备(片上实验室)颇具吸引力。样品需求量低是这些设备的主要优势之一,因此,运行此类平台所需的成本更少,处理的废物也更少。加上液体在微尺度上的独特行为,有助于控制分子的扩散和相互作用,这使得小型化设备特别适用于化学合成以及生物学和/或化学分析。在本报告中,我们设计了具有可编程微阀的微流体平台,能够执行常规操作。该平台使用三层混合PDMS-PDMS玻璃结构进一步优化,以包含通用的样品处理功能。通过对气动微型阀中的流体进行离散数字控制,可以实现对体积流量的精确可编程控制。该系统的特定协议是光路平台,该平台由微流体反应器中的MEMS和SU-8阵列组成,用于并行生物学分析。为了证明生物分子分析整合的编程能力,我们开发了一种将链霉亲和素固定在SU-8图案化表面上的自动化分析方法。然后将这些具有低样品需求量(每次测定0.5μl)的光学微流体平台用作蛋白质传感器,其工作浓度范围为39.3至2500 nM,用于检测样品溶液中的生物素。结果表明这些平台在常规测定目的或特定应用(如蛋白质-蛋白质和蛋白质-配体相互作用的高通量筛选)中的潜在应用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号