...
首页> 外文期刊>Selected Topics in Applied Earth Observations and Remote Sensing, IEEE Journal of >Hyperspectral Unmixing Overview: Geometrical, Statistical, and Sparse Regression-Based Approaches
【24h】

Hyperspectral Unmixing Overview: Geometrical, Statistical, and Sparse Regression-Based Approaches

机译:高光谱解混概述:基于几何,统计和稀疏回归的方法

获取原文
获取原文并翻译 | 示例
           

摘要

Imaging spectrometers measure electromagnetic energy scattered in their instantaneous field view in hundreds or thousands of spectral channels with higher spectral resolution than multispectral cameras. Imaging spectrometers are therefore often referred to as hyperspectral cameras (HSCs). Higher spectral resolution enables material identification via spectroscopic analysis, which facilitates countless applications that require identifying materials in scenarios unsuitable for classical spectroscopic analysis. Due to low spatial resolution of HSCs, microscopic material mixing, and multiple scattering, spectra measured by HSCs are mixtures of spectra of materials in a scene. Thus, accurate estimation requires unmixing. Pixels are assumed to be mixtures of a few materials, called endmembers. Unmixing involves estimating all or some of: the number of endmembers, their spectral signatures, and their abundances at each pixel. Unmixing is a challenging, ill-posed inverse problem because of model inaccuracies, observation noise, environmental conditions, endmember variability, and data set size. Researchers have devised and investigated many models searching for robust, stable, tractable, and accurate unmixing algorithms. This paper presents an overview of unmixing methods from the time of Keshava and Mustard's unmixing tutorial to the present. Mixing models are first discussed. Signal-subspace, geometrical, statistical, sparsity-based, and spatial-contextual unmixing algorithms are described. Mathematical problems and potential solutions are described. Algorithm characteristics are illustrated experimentally.
机译:成像光谱仪可以以比多光谱相机更高的光谱分辨率来测量数百或数千个光谱通道中瞬时视场中散射的电磁能量。因此,成像光谱仪通常被称为高光谱相机(HSC)。更高的光谱分辨率可通过光谱分析实现材料鉴定,这便利了无数应用,这些应用要求在不适合经典光谱分析的情况下鉴定材料。由于HSC的空间分辨率低,微观材料混合以及多重散射,HSC测量的光谱是场景中材料光谱的混合。因此,准确的估计需要分解。像素被假定为几种材料的混合,称为端构件。分解涉及估计所有或某些:末端成员的数量,它们的光谱特征以及每个像素处的丰度。由于模型的不准确性,观察噪声,环境条件,端成员变异性和数据集大小,分解是一个具有挑战性的不适定逆问题。研究人员已经设计并研究了许多模型,以寻找鲁棒,稳定,易于处理和准确的解混算法。本文概述了从Keshava和Mustard的分解教程到现在的分解方法。首先讨论混合模型。描述了信号子空间,几何,统计,基于稀疏性和空间上下文解混合算法。描述了数学问题和潜在的解决方案。实验说明了算法特征。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号