...
首页> 外文期刊>Selected Topics in Applied Earth Observations and Remote Sensing, IEEE Journal of >Predicting Forest Evapotranspiration by Coupling Carbon and Water Cycling Based on a Critical Stomatal Conductance Model
【24h】

Predicting Forest Evapotranspiration by Coupling Carbon and Water Cycling Based on a Critical Stomatal Conductance Model

机译:基于临界气孔电导模型的碳与水循环耦合预测森林蒸散

获取原文
获取原文并翻译 | 示例

摘要

Quantifying forest evapotranspiration (ET) is essential for understanding of climatic response of forest carbon and water cycling. However, there are still large uncertainties in forest ET predictions, especially in plant transpiration (PT). The poor estimations of forest ET and PT are largely attributed to the neglect of wet canopy evaporation and uncertainties in the stomatal conductance. Thus, by coupling a revised Ball—Woodrow–Berry (BWB) model, a precipitation intercepted algorithm and the gross primary production (GPP) model to Shuttleworth–Wallace (SW) model, this study introduced a modified SW model. The performances of this model were subsequently tested in three different forest sites with long-term observed records. Compared with previous models, had a canopy stomatal scheme with stronger ecological significance and simpler GPP estimation scheme. Our analyses reveal the following. 1) evidently improves the agreements between estimated and measured ET compared to original SW (R increasing by 0.19–0.68). could more accurately partition PT and evaporation, when compared with an earlier BWB-based SW (R increasing by ∼0.03). This finding also supports the use of Lohammer function in semiempirical model of stomatal conductance. 2) Accurate predictions of GPP are helpful for improving ET estimations in , suggesting that carbon and water fluxes are inherently linked. 3) In addition to GPP, leaf area index evidently affects the performances of estimated ET in . These results suggest that critically coupling carbon and water cycling are very important for improving forest ET prediction.
机译:量化森林蒸散量(ET)对于理解森林碳和水循环的气候响应至关重要。但是,森林ET预测,尤其是植物蒸腾(PT)仍存在很大的不确定性。森林ET和PT的估算不佳,主要是由于忽略了湿冠层蒸发以及气孔导度的不确定性。因此,通过将修正的Ball-Woodrow-Berry(BWB)模型,降水截留算法和总初级生产(GPP)模型与Shuttleworth-Wallace(SW)模型耦合,本研究引入了一种修正的SW模型。随后在具有长期观察记录的三个不同的森林地点测试了该模型的性能。与以前的模型相比,有一个冠层气孔方案具有更强的生态意义和更简单的GPP估计方案。我们的分析揭示了以下内容。 1)与原始软件相比,显着改善了估计的和测得的ET之间的一致性(R增加0.19–0.68)。与较早的基于BWB的软件(R增加〜0.03)相比,可以更精确地分配PT和蒸发。这一发现也支持在气孔导度的半经验模型中使用Lohammer函数。 2)GPP的准确预测有助于改善ET的估算,表明碳通量和水通量具有内在联系。 3)除GPP外,叶面积指数显然还会影响ET中估计ET的性能。这些结果表明,碳和水循环的临界耦合对于改善森林ET预测非常重要。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号