...
首页> 外文期刊>Science of the total environment >Atmospheric nitrogen enrichment changes nutrient stoichiometry and reduces fungal N supply to peatland ericoid mycorrhizal shrubs
【24h】

Atmospheric nitrogen enrichment changes nutrient stoichiometry and reduces fungal N supply to peatland ericoid mycorrhizal shrubs

机译:大气氮富集改变营养化学计量,减少真菌N供应,以泥炭地菌根菌根灌木

获取原文
获取原文并翻译 | 示例

摘要

Peatlands store one third of global soil carbon (C) and up to 15% of global soil nitrogen (N) but often have low plant nutrient availability owing to slow organic matter decomposition under acidic and waterlogged conditions. In rainwater-fed ombrotrophic peatlands, elevated atmospheric N deposition has increased N availability with potential consequences to ecosystem nutrient cycling. Here, we studied how 14 years of continuous N addition with either nitrate or ammonium had affected ericoid mycorrhizal (ERM) shrubs at Whim Bog, Scotland. We examined whether enrichment has influenced foliar nutrient stoichiometry and assessed using N stable isotopes whether potential changes in plant nutrient constraints are linked with plant N uptake through ERM fungi versus direct plant uptake. High doses of ammonium alleviated N deficiency in Calluna vulgaris and Erica tetralix, whereas low doses of ammonium and nitrate improved plant phosphorus (P) nutrition, indicated by the lowered foliar N:P ratios. Root acid phosphatase activities correlated positively with foliar N:P ratios, suggesting enhanced P uptake as a result of improved N nutrition. Elevated foliar δ~(15)N of fertilized shrubs suggested that ERM fungi were less important for N supply with N fertilization. Increases in N availability in peat porewater and in direct nonmycorrhizal N uptake likely have reduced plant nitrogen uptake via mycorrhizal pathways. As the mycorrhizal N uptake correlates with the reciprocal C supply from host plants to the soil, such reduction in ERM activity may affect peat microbial communities and even accelerate C loss via decreased ERM activity and enhanced saprotrophic activity. Our results thus introduce a previously unrecognized mechanism for how anthropogenic N pollution may affect nutrient and carbon cycling within peatland ecosystems.
机译:泥炭地将三分之一的全球土壤碳(c)和全球土壤氮(n)的15%储存,但由于酸性和涝渍条件下有机质分解缓慢,植物养分可用性较低。在雨水喂食令人障碍泥炭泥土中,升高的大气压沉积增加了N可用性对生态系统营养循环的潜在后果。在这里,我们研究了硝酸盐或铵的连续14岁,在苏格兰突发血博格中影响了煤层菌根(ERM)灌木。我们检查了富集是否影响了叶面养分化学计量并使用N稳定同位素评估了植物营养限制的潜在变化与植物N采用通过ERM FURGI与直接植物摄取有关。高剂量的铵缓解Calluna和Erica Tetralix的N缺乏,而低剂量的铵和硝酸盐改善植物磷(P)营养,由下面的叶面N:P比表明。根酸性磷酸酶活性与叶酸N:P比具有正相关,表明由于改善的N营养而增强的P吸收。升高的叶面δ〜(15)n受精灌木表明,ERM真菌对N施肥的N供应不太重要。泥炭沉皮水中的N可用性增加,直接非毒性N型吸收可能通过菌根途径降低植物氮吸收。随着菌根的N摄取与来自宿主植物的倒数C供应与土壤相关,ERM活动的降低可能会影响泥炭微生物社区,甚至通过降低的ERM活动和增强的嗜血养活性加速C损失。因此,我们的结果引入了先前未被识别的人为污染如何影响泥炭地生态系统内的营养素和碳循环。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号