...
首页> 外文期刊>Science of the total environment >Non-stationary response of rain-fed spring wheat yield to future climate change in northern latitudes
【24h】

Non-stationary response of rain-fed spring wheat yield to future climate change in northern latitudes

机译:雨水春小麦产量的非静止响应,北纬南部纬度将来气候变化

获取原文
获取原文并翻译 | 示例
           

摘要

The non-stationary response of crop growth to changes in hydro-climatic variables makes yield projection uncertain and the design and implementation of adaptation strategies debatable. This study simulated the time-varying behavior of the underlying cause-and-effect mechanisms affecting spring wheat yield (SWY) under various climate change and nitrogen (N) application scenarios in the Red Deer River basin in agricultural lands of the western Canadian Prairies. A calibrated and validated Soil and Water Assessment Tool and Analysis of Variance decomposition methods were utilized to assess the contribution of crop growth parameters, Global Climate Models, Representative Concentration Pathways, and downscaling techniques to the total SWY variance for the 2040-2064 period. The results showed that the cause-and-effect mechanisms, driving crop yield, shifted from water stress (W-stress) dominated (27 days of W-stress days) during the historical period to nitrogen stress (N-stress) dominated (27 to 35 N-stress days) in the future period. It was shown that while higher precipitation, warmer weather, and early snowmelts, along with elevated CO_2 may favor SWY in cold regions in the future (up to 50% more yields in some sub-basins), the yield potentials may be limited by N-stress (only up to 0.7% yield increase in some sub-basins). The N-stress might be partially related to the N deficiency in the soil, which can be compensated by N fertilizer application. However, inadequate N uptake due to limited evapotranspiration under elevated atmospheric CO_2 might pose restrictions to SWY potentials even in the least N deficient regions. This study uncovers important information on the understanding of spatiotemporal variability of hydrogeochem-ical processes driving crop yields and the non-stationary response of yields to changing climate. The results also underscore spatiotemporal variability of N-stress due to N deficiency in the soil or N uptake by crops, both of which may restrain SWY by changes in atmospheric CO_2 concentrations in the future.
机译:作物生长对水力气候变量变化的非静止响应使得能量投影不确定,适应策略的设计和实施。本研究模拟了影响春小麦产量(SWY)在西加拿大大草原农业土地中的各种气候变化和氮气(N)氮(N)施用方案下影响春小麦产量(SWY)的潜在损益机制的时变行为。利用校准和验证的土壤和水评估工具和方差分解方法分析,评估作物生长参数,全球气候模型,代表性浓度途径和缩小技术在2040-2064期间的总SWY方差的贡献。结果表明,在历史时期的氮气胁迫(N-ressuly)主导的历史时期(W-Leyaly)中占(W-Regual Days的27天)偏移(W-Lyger Days的27天)的原因和效应机制(W-Lyger Days的27天)(27在未来的时间期间到35岁。结果表明,虽然较高的降水,天气和早期的雪地,但升高的CO_2可能有利于在未来的寒冷地区(在某些子盆地中高达50%的产量),但屈服电位可能受到n -Stress(仅在某些子盆地上的产量增加仅0.7%)。 N-ress应激可能部分地与土壤中的N缺乏有关,其可以通过N肥料应用来补偿。然而,由于升高的大气CO_2下蒸散量有限的蒸散,即使在最小缺陷的区域中,也可能对SWY电位产生限制可能会产生限制。本研究揭示了关于促进水力造产工艺的现时变异性的重要信息,驾驶作物产量和不断变化气候的不稳定响应。由于土壤中的n缺乏症或作物的N缺乏,结果还强调了N-ress的不可变异性,两者都可能在未来抑制大气CO_2浓度的变化。

著录项

  • 来源
    《Science of the total environment》 |2021年第10期|145474.1-145474.17|共17页
  • 作者单位

    Watershed Science and Modeling Laboratory Department of Earth and Atmospheric Sciences Faculty of Science University of Alberta Edmonton AB T6G 2R3 Canada;

    Watershed Science and Modeling Laboratory Department of Earth and Atmospheric Sciences Faculty of Science University of Alberta Edmonton AB T6G 2R3 Canada;

    Ottawa Research and Development Centre Agriculture and Agri-Food Canada Ottawa ON K1A 0C6 Canada;

    Natural Resource Management Branch Alberta Agriculture and Forestry Edmonton AB Canada Department of Renewable Resources Faculty of Agricultural life and Environmental Sciences University of Alberta Edmonton AB T6G 2R3 Canada;

    Department of Renewable Resources Faculty of Agricultural life and Environmental Sciences University of Alberta Edmonton AB T6G 2R3 Canada;

    Watershed Science and Modeling Laboratory Department of Earth and Atmospheric Sciences Faculty of Science University of Alberta Edmonton AB T6G 2R3 Canada;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Variance decomposition; Water stress; Nitrogen stress; Temperature stress; Hydrologic processes;

    机译:方差分解;水胁迫;氮胁迫;温度胁迫;水文过程;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号