首页> 外文期刊>Science of the total environment >Using rainfall radar data to improve interpolated maps of dose rate in the Netherlands
【24h】

Using rainfall radar data to improve interpolated maps of dose rate in the Netherlands

机译:利用降雨雷达数据改善荷兰的剂量率插值图

获取原文
获取原文并翻译 | 示例
       

摘要

The radiation monitoring network in the Netherlands is designed to detect and track increased radiation levels, dose rate more specifically, in 10-minute intervals. The network consists of 153 monitoring stations. Washout of radon progeny by rainfall is the most important cause of natural variations in dose rate. The increase in dose rate at a given time is a function of the amount of progeny decaying, which in turn is a balance between deposition of progeny by rainfall and radioactive decay. The increase in progeny is closely related to average rainfall intensity over the last 2.5 h. We included decay of progeny by using weighted averaged rainfall intensity, where the weight decreases back in time. The decrease in weight is related to the half-life of radon progeny. In this paper we show for a rainstorm on the 20th of July 2007 that weighted averaged rainfall intensity estimated from rainfall radar images, collected every 5 min, performs much better as a predictor of increases in dose rate than using the non-averaged rainfall intensity. In addition, we show through cross-validation that including weighted averaged rainfall intensity in an interpolated map using universal kriging (UK) does not necessarily lead to a more accurate map. This might be attributed to the high density of monitoring stations in comparison to the spatial extent of a typical rain event. Reducing the network density improved the accuracy of the map when universal kriging was used instead of ordinary kriging (no trend). Consequently, in a less dense network the positive influence of including a trend is likely to increase. Furthermore, we suspect that UK better reproduces the sharp boundaries present in rainfall maps, but that the lack of short-distance monitoring station pairs prevents cross-validation from revealing this effect.
机译:荷兰的辐射监测网络旨在以10分钟为间隔检测和跟踪增加的辐射水平,更具体地讲是剂量率。该网络由153个监控站组成。降雨对ra子代的冲刷是剂量率自然变化的最重要原因。在给定时间剂量率的增加是后代衰变量的函数,而后代衰变量又是降雨引起的后代沉积与放射性衰变之间的平衡。后代的增加与最近2.5小时的平均降雨强度密切相关。我们通过使用加权平均降雨强度包括后代的衰变,其中权重随时间下降。体重的减少与pro后代的半衰期有关。在本文中,我们表明,在2007年7月20日的一场暴雨中,根据每5分钟收集一次的降雨雷达图像估算的加权平均降雨强度,与使用非平均降雨强度相比,可以更好地预测剂量率的增加。此外,我们通过交叉验证表明,使用通用克里金法(UK)在插值地图中包括加权平均降雨强度并不一定会得出更准确的地图。与典型降雨事件的空间范围相比,这可能归因于监测站的高密度。当使用通用克里金法代替普通克里金法时,降低网络密度可提高地图的准确性(无趋势)。因此,在密度较小的网络中,包含趋势的积极影响可能会增加。此外,我们怀疑英国可以更好地重现降雨图中的清晰边界,但是缺乏短距离监测站对可防止交叉验证揭示这种影响。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号