首页> 外文期刊>The Science of the Total Environment >Ag-doped BiVO_4/BiFeO_3 photoanode for highly efficient and stable photocatalytic and photoelectrochemical water splitting
【24h】

Ag-doped BiVO_4/BiFeO_3 photoanode for highly efficient and stable photocatalytic and photoelectrochemical water splitting

机译:AG-DOPED BIVO_4 / BIFEO_3光电催化和光催化和光电化学水分裂

获取原文
获取原文并翻译 | 示例
           

摘要

In a conventional photoelectrochemical (PEC) water splitting system using BiVO_4 (BVO), most of the charge carriers have very sluggish photocatalysis reaction kinetics because they are easily recombined from the defects developed from the bulk or the surface of the photoanodes before reaching the fluorine-doped tin dioxide (FTO). Herein, we present a facile design and fabrication technique for a Ag-BVO/BiFeO_3 (BFO) heterostructure photoanode by Ag doping and surface passivation with BFO on the as-preparedBVO photoanode. Its photocatalytic properties for PEC water splitting and tetracycline (TC) degradation are compared to those of BVO/BFO, BVO, and Ag-BVO photocatalyst nanoparticle (NP) films. The effect of Ag-doping/BFO surface passivation on the morphological, structural, and optical properties and surface electronic structure of the as-obtainedBVO electrodes was investigated. The photocatalytic degradation of TC in aqueous solution by Ag-BVO/BFO was greatly increased (>1.5-fold) compared to that of BVO. The TC was completely photodegraded in 50 min of visible-light irradiation. The as-preparedAg-BVO/BFO heterojunction photoanode not only exhibited 4-fold higher PEC performance (0.72 mA cm~(-2) vs. RHE) and stability than those of the pure BVO components, but also the onset potential in the Ag-BVO/BFO photoanode was cathodically shifted by 600 mV compared to that of the bare BVO. The Ag-BVO/BFO photoelectrode with the highest donor density and the lowest charge transfer resistance exhibited a 4.46-fold higher carrier density than that of the pure BVO photoelectrode. More specifically, the Mott-Schottky (MS) and electrochemical impedance spectroscopy (EIS) results demonstrated that the Ag-doping not only effectively increased the carrier charge density of BVO, thus increasing the consumption rate of charge carriers, but also increased the charge transfer and transport efficiencies of the BVO photoanodes.
机译:在使用BIVO_4(BVO)的传统光电化学(PEC)水分裂系统中,大多数电荷载体具有非常缓慢的光催化反应动力学,因为它们在到达氟之前的缺陷中容易从散装或光阳极表面产生的缺陷重新组合掺杂的锡二氧化锡(FTO)。在此,我们介绍了AG-BVO / BIFEO_3(BFO)异质结构PhotoPanode通过Ag掺杂和用BFO在AS-SpreckBVO PhotoNode上的表面钝化来介绍Ag-BVO / BifeO_3(BFO)异质结构。将其用于PEC水分解和四环素(TC)降解的光催化性能与BVO / BFO,BFO,BVO和Ag-BVO光催化剂纳米颗粒(NP)薄膜的光催化性能进行比较。研究了Ag-Doping / BFO表面钝化对根据所获得的BVO电极的形态学,结构和光学性质和表面电子结构的影响。与BVO相比,Ag-BVO / BFO水溶液中Tc的光催化降解大大增加(> 1.5倍)。在50分钟的可见光照射中,TC完全光降解。 AS-MedientAg-BVO / BFO异质结光电极不仅表现出4倍的PEC性能(0.72 mA cm〜(-2)与rhe)和稳定性而不是纯BVO组件的稳定性,也是AG的发病潜力-BVO / BFO PhotoNode与裸BVO相比,将阴极移位600 mV。具有最高供体密度和最低电荷传递电阻的AG-BVO / BFO光电极表现出比纯BVO光电极的4.46倍升高的载流子密度。更具体地,Mott-Schottky(MS)和电化学阻抗光谱(EIS)结果表明,Ag掺杂不仅有效地增加了BVO的载流子充电密度,从而增加了电荷载体的消耗率,而且增加了电荷转移并运输BVO Photoanode的效率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号