首页> 外文期刊>The Science of the Total Environment >Identification, interactions, nitrogen removal pathways and performances of culturable heterotrophic nitrification-aerobic denitrification bacteria from mariculture water by using cell culture and metagenomics
【24h】

Identification, interactions, nitrogen removal pathways and performances of culturable heterotrophic nitrification-aerobic denitrification bacteria from mariculture water by using cell culture and metagenomics

机译:采用细胞培养和偏造胞嘧啶从养殖水栽培水中培养型异养硝化碳脱氮细菌的鉴定,相互作用,氮去除途径和性能

获取原文
获取原文并翻译 | 示例
           

摘要

The rapid expansion of aquaculture industry brings about significant environmental concerns, especially nitrogen pollution. Compared to nitrogen bioconversion implemented by the conventional autotrophic nitrifiers and anaerobic denitrifiers, bacteria capable of heterotrophic nitrification-aerobic denitrification (HNAD) in mariculture environments have yet to be well understood. In this study, twenty-five species of new halophilic HNAD bacteria were isolated and identified from mariculture water. By these strains co-cultured in the synthetic mariculture water (ammonia: 5 mg/L, C/N: 5, salinity: 30‰), microbial dynamic analysis showed that ammonia were mainly removed by dominant genera of Marinomonas, Marinobacterium, Halomonas, and Cobetia which simultaneously had positive correlations to total nitrogen removal. Metagenomic annotations revealed that inorganic-N was converted into gaseous-N and organic-N by these HNAD bacteria through nitrogen metabolism pathways of assimilation, partial nitrification, nitroalkane oxidation, nitrateitrite dissimilation reduction, and denitrification. Among them, due to the interspecific coexistence and cooperation, Marinomonas communis & Halomonas titanicae, Marinomonas communis & Cobetia marina, Marinomonas aquimarina & Halomonas titanicae, and Marinomonas aquimarina & Cobetia marina exhibited significantly better inorganic-N removal efficiency and stability. The four novel bacterial consortia could transform approximately 60% of initial ammonia into intracellular organic-N (18-20%) and gaseous-N (36-38%), which were significantly higher than those of their single strains. These findings will contribute to understanding and developing the culturable HNAD bacteria as promising candidates for nitrogen pollution control and water bioremediation in mariculture or other saline environments.
机译:水产养殖业的快速扩张带来了重大的环境问题,特别是氮污染。与传统的自养氮杂物和厌氧脱氮化实施的氮生物转化相比,尚未理解水疗环境中的异养硝化的细菌(HNAD)的细菌尚未理解。在这项研究中,分离出二十五种新的嗜盐HNAD细菌并从养殖水中鉴定出来。通过这些菌株在合成式养水水中共同培养(氨:5mg / L,C / N:5,盐度:30‰),微生物动态分析表明,氨主要由马林诺拉斯,马里诺米菌,卤代汞(Halomonas)占据氨。和同时与全氮除去的阳性相关性的鹅卵石。通过氮代谢途径,通过同化,部分硝化,硝基烷烃,硝酸盐/亚硝酸盐氧化,硝酸盐/亚硝酸盐氧化,和反硝化,将无机-N通过这些HNAD细菌转化为Gase-N和有机-N,通过氮代谢途径转化为Gase-N和有机-N。其中,由于占特色的共存和合作,Marinomonas Communis&Halomonas Titanicae,Marinomonas Communis&Cobetia Marina,Marinomonas Aquimarina&Halomonas Titanicae和Marinomonas Aquimarina&Cobetia Marina表现出明显更好的无机-N去除效率和稳定性。四种新的细菌结合可以将大约60%的初始氨转化为细胞内有机-N(18-20%)和Gase-N(36-38%),其显着高于其单株菌株。这些发现将有助于了解和开发培养的HNAD细菌,作为海水养殖或其他盐水环境中氮污染控制和水生物化的有希望的候选人。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号