首页> 外文期刊>The Science of the Total Environment >Riparian land-use systems impact soil microbial communities and nitrous oxide emissions in an agro-ecosystem
【24h】

Riparian land-use systems impact soil microbial communities and nitrous oxide emissions in an agro-ecosystem

机译:河岸土地利用系统影响农业生态系统中的土壤微生物群落和氧化二氮排放

获取原文
获取原文并翻译 | 示例
           

摘要

Riparian buffer systems (RBS) are considered a best management practice (BMP) in agricultural landscapes to intercept soil nitrogen (N) and phosphorus (P) leaching and surface runoff into aquatic ecosystems. However, these environmental benefits could be offset by increased greenhouse gas (GHG) emissions, including nitrous oxide (N_2O). The main sources of N_2O in soil are linked to processes which are mediated by soil microbial communities. These microorganisms play crucial roles in N-cycling and in the reduction of nitrate to N_2, and N_2O gases. This study was conducted to determine the abundance and diversity of microbial communities and functional genes associated with N-cycling and their influence on N_2O emissions in different riparian land-use: undisturbed natural forest (UNF), rehabilitated site (RH), grass buffer (GRB), and an adjacent agricultural land (AGR). Soil was sampled concurrently with N_2O emissions on July 13,2017. DNA was extracted and used to target key N-cycling genes for N-fixation (nifH), nitrification: (amoA), and denitrification (nirS, nirK, and nosZ) via quantitative PCR, and for high throughput sequencing of total bacterial and fungal communities. Non-metric multidimensional scaling (NMDS) was used to examine microbial community composition and indicated significant differences in bacterial (p < 0.001) and fungal (p < 0.0085) communities between sites. Bacterial abundance differed significantly (p = 0.0005) between RBS and AGR sites with the highest populations occurring in the UNF (2.1 × 10~(10) copies g~(-1) dry soil), and lowest in AGR (5.3 × 10~9 copies g~(-1) dry soil). However, the AGR site had the highest ammonia-oxidizing bacteria (AOB) abundance, indicating that nitrification is highest at this site. The abundance of the nosZ gene was highest in RH and GRB demonstrating the capacity for complete denitrification at these sites, lowering measured N_2O. These results suggest N-cycling microbial community dynamics differ among RBS and are influencing N_2O emissions in the sites investigated.
机译:河岸缓冲系统(RBS)被认为是农业景观中的最佳管理实践(BMP),以拦截土壤氮(N)和磷(P)浸出和表面径流进入水生生态系统。然而,这些环境效益可以通过增加的温室气体(温室气体)排放,包括氧化二氮(N_2O)来抵消。土壤中N_2O的主要来源与土壤微生物群落介导的方法有关。这些微生物在N循环中起重要的作用,并在将硝酸盐还原到N_2和N_2O气体中。进行该研究以确定与N循环相关的微生物群落和功能基因的丰富和多样性及其对不同河南土地利用的影响:未受干扰的天然森林(UNF),康复网站(RH),草缓冲液( GRB)和邻近的农业用地(AGR)。土壤在7月13,2017的N_2O排放时与N_2O排放相同时抽出。提取DNA并用于通过定量PCR靶向N-固定(NiFH),硝化剂:(AmOA)和反硝化(NIRS,NIRK和NOSZ)的键N-循环基因,以及总细菌和真菌的高通量测序社区。非公制多维缩放(NMDS)用于检查微生物群落组合物,并表明位点之间的细菌(P <0.001)和真菌(P <0.0085)个社区的显着差异。在rbs和agr站点之间的细菌丰度(p = 0.0005)不同(2.1×10〜(10)拷贝G〜(-1)干燥土壤中出现的最高种群(2.1×10〜(10)干燥土壤),最低(5.3×10〜 9拷贝G〜(-1)干燥土壤)。然而,该农业部位具有最高的氨氧化细菌(AOB)丰富,表明硝化在本网站上是最高的。 NoSz基因的丰富在RH和GRB中最高,证明这些位点的完全脱氮能力,降低测量的N_2O。这些结果表明N循环的微生物群落动态在RBS中不同,并在调查的网站中影响N_2O排放。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号