首页> 外文期刊>The Science of the Total Environment >Critical review of existing nanomaterial adsorbents to capture carbon dioxide and methane
【24h】

Critical review of existing nanomaterial adsorbents to capture carbon dioxide and methane

机译:对现有的捕获二氧化碳和甲烷的纳米材料吸附剂的严格审查

获取原文
获取原文并翻译 | 示例
       

摘要

Innovative gas capture technologies with the objective to mitigate CO_2 and CH_4 emissions are discussed in this review. Emphasis is given on the use of nanoparticles (NP) as sorbents of CO_2 and CH_4, which are the two most important global warming gases. The existing NP sorption processes must overcome certain challenges before their implementation to the industrial scale. These are: i) the utilization of the concentrated gas stream generated by the capture and gas purification technologies, ii) the reduction of the effects of impurities on the operating system, iii) the scale up of the relevant materials, and iv) the retrofitting of technologies in existing facilities. Thus, an innovative design of adsorbents could possibly address those issues. Biogas purification and CH_4 storage would become a new motivation for the development of new sorbent materials, such as nanomaterials. This review discusses the current state of the art on the use of novel nanomaterials as adsorbents for CO_2 and CH_4. The review shows that materials based on porous supports that are modified with amine or metals are currently providing the most promising results. The Fe_3O_4-graphene and the MOF-117 based NPs show the greatest CO_2 sorption capacities, due to their high thermal stability and high porosity. Conclusively, one of the main challenges would be to decrease the cost of capture and to scale-up the technologies to minimize large-scale power plant CO_2 emissions.
机译:这篇综述讨论了旨在减少CO_2和CH_4排放量的创新性气体捕获技术。重点介绍了使用纳米颗粒(NP)作为CO_2和CH_4的吸附剂,这是全球最重要的两种全球变暖气体。现有的NP吸附过程必须克服某些挑战,才能实施到工业规模。它们是:i)利用由捕集和气体净化技术产生的浓气流,ii)减少杂质对操作系统的影响,iii)扩大相关材料的体积,iv)改造现有设施中的技术。因此,吸附剂的创新设计可以解决这些问题。沼气净化和CH_4储存将成为开发新型吸附剂材料(例如纳米材料)的新动力。这篇评论讨论了使用新型纳米材料作为CO_2和CH_4吸附剂的最新技术。审查表明,基于胺或金属改性的多孔载体的材料目前提供最有希望的结果。 Fe_3O_4-石墨烯和基于MOF-117的NP由于其高的热稳定性和高的孔隙率而显示出最大的CO_2吸附能力。最终,主要挑战之一将是降低捕集成本并扩大技术规模,以最大程度地减少大规模发电厂的CO_2排放。

著录项

  • 来源
    《The Science of the Total Environment》 |2017年第1期|51-62|共12页
  • 作者单位

    Department of Chemical Biological and Environmental Engineering Escola d'Enginyeria, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain;

    Department of Chemical Biological and Environmental Engineering Escola d'Enginyeria, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain;

    Department of Chemical Biological and Environmental Engineering Escola d'Enginyeria, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain;

    Applied Nanoparticles Si, Carrer Corcega 516,08025 Barcelona, Spain;

    Department of Environmental Engineering, Democritus University of Thrace, Xanthi 67132, Greece;

    Institut Català de Nanotecnologia (ICN), Campus de la UAB, 08193 Bellaterra, Spain , Institut Català de Nanotecnologia (ICN), Campus de la UAB, 08193 Bellaterra, Spain;

    Department of Chemical Biological and Environmental Engineering Escola d'Enginyeria, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain;

    Department of Chemical Biological and Environmental Engineering Escola d'Enginyeria, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Adsorption; Nanomaterials; Methane; Carbon dioxide; Metal organic framework; Zeolite;

    机译:吸附;纳米材料甲烷二氧化碳;金属有机骨架;沸石;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号