首页> 外文期刊>The Science of the Total Environment >Fabrication of L-cysteine stabilized α-FeOOH nanocomposite on porous hydrophilic biochar as an effective adsorbent for Pb~(2+) removal
【24h】

Fabrication of L-cysteine stabilized α-FeOOH nanocomposite on porous hydrophilic biochar as an effective adsorbent for Pb~(2+) removal

机译:在多孔亲水生物炭上制备L-半胱氨酸稳定的α-FeO​​OH纳米复合材料作为Pb〜(2+)去除的有效吸附剂

获取原文
获取原文并翻译 | 示例
       

摘要

Lead (Pb) pollution has caused worldwide attention as it can cause hazards to humans and the environment. Chemical properties and structures of the adsorbent greatly influence the Pb~(2+) removal efficiency. L-cysteine (L-cy) stabilized porous hydrophilic biochar-supported α-FeOOH nanocomposites (L-cy/FeOOH@PHB) are prepared as an efficient adsorbent via a cheap and simple one-step hydrothermal method for removing Pb~(2+) from aqueous solution. Characterizations of the synthesized L-cy/FeOOH@PHB revealed that the iron particles distributed uniformly on the surface of porous hydrophilic biochar. The equilibrium adsorption capacity of the L-cy/ FeOOH@PHB reaches up to 103.04 mg g~(-1) for Pb~(2+) removal, higher than other typical materials reported preiously. The adsorption kinetics and isotherms were fitted well with the pseudo-second-order model and the Freundlich model, respectively, suggesting chemical adsorption on the heterogeneous surface and pores of L-cy/FeOOH@PHB. The introduction of L-cysteine provides abundant surface N- and S-containing functional groups as active sites for Pb~(2+) adsorption and also plays an important role in altering the porous structure, distribution of a-FeOOH nanoparticles, affinity of iron species to biochar, and surface functional groups, which determined the performance of the resultant composites. Notably, regeneration experiments show that Pb~(2+) adsorption capacity still maintains at 77.3 mg g~(-1) on L-cy/FeOOH@PHB after five successive utilizations, indicating the potential applicability for removing Pb~(2+) from aqueous solution.
机译:铅污染已经引起了全世界的关注,因为它可能对人类和环境造成危害。吸附剂的化学性质和结构极大地影响了Pb〜(2+)的去除效率。通过廉价且简单的一步水热法去除Pb〜(2+),制备了L-半胱氨酸(L-cy)稳定的多孔亲水性生物炭负载的α-FeO​​OH纳米复合材料(L-cy / FeOOH @ PHB)。 )。合成的L-cy / FeOOH @ PHB的特征表明,铁颗粒均匀分布在多孔亲水生物炭的表面上。 L-cy / FeOOH @ PHB的平衡吸附容量达到103.04 mg g〜(-1)去除Pb〜(2+),高于以往报道的其他典型材料。吸附动力学和等温线分别与拟二级模型和Freundlich模型拟合得很好,表明化学吸附在L-cy / FeOOH @ PHB的异质表面和孔上。 L-半胱氨酸的引入提供了丰富的表面含N和S的官能团作为Pb〜(2+)吸附的活性位点,并且在改变多孔结构,a-FeOOH纳米颗粒的分布,铁的亲和力方面也起着重要作用。生物炭和表面官能团的种类,这决定了所得复合材料的性能。值得注意的是,再生实验表明,L-cy / FeOOH @ PHB连续使用五次后,Pb〜(2+)的吸附容量仍保持在77.3 mg g〜(-1),表明其去除Pb〜(2+)的潜在适用性。从水溶液。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号