...
首页> 外文期刊>The Science of the Total Environment >Interplay between resistance and resilience governs the stability of a freshwater microbial food web under multiple stressors
【24h】

Interplay between resistance and resilience governs the stability of a freshwater microbial food web under multiple stressors

机译:抵抗力和弹性之间的相互作用决定着多种压力下淡水微生物食物网的稳定性。

获取原文
获取原文并翻译 | 示例
           

摘要

Energy (photosynthetically active [PAR] and ultraviolet [UVR] radiation) and matter (organic and inorganic nutrients) fluxes regulate the ecosystem's stability. However, the mechanisms underpinning the potential interplay between resistance and resilience to shifts in nutrient inputs and UVR are poorly understood. To assess how the UVR x nutrients interaction alters ecosystem stability, we exposed in situ a microbial food web from an oligotrophic ecosystem to: (1) two light (UVR PAR and PAR), and (2) four nutrient (ambient concentrations, phosphorus [P], carbon [C] and C x P addition) treatments for three weeks. During this period, we quantified the community composition and biomass, sestonic P and C:P ratio, primary [PP] and bacterial [BP] production, community [CR] and bacterial [BR] respiration, excreted organic carbon [LOCI, as well as the commensalistic phytoplankton-bacteria interaction (i.e. bacterial carbon demand [BCDI:EOC ratio) and the metabolic balance of the ecosystem (i.e. [PP:R] ratio). The stability of all response variables under the four environmental scenarios tested (i.e. UVR, UVR x C, UVR x P, and UVR x C x P) was quantified by means of the resistance and resilience indexes. The microbial community was dominated by phototrophs during the experimental period regardless of the treatment considered. The most complex scenario, i.e. UVR x C x P. decreased the resistance for all variables, except for BR and the PP:R ratio. Despite that PP:R ratio showed the highest resistance under such scenaiio, it was >1 in all environmental scenarios (i.e. net autotrophic), except under the UVR x C interaction, where, concomitant with increased resilience, the balance shifted towards net heterotrophy (PP:R < 1), tinder the UVR x C x P scenario, the metabolic balance of the ecosystem proved strongly resistant due mainly to high resistance of bacterial respiration and a firm stability of the commensalistic interaction. Our results evidence that the high resilience of phototrophs (favoring their predominance over mixo- and heterotrophs) may lead to the maintenance of the autotrophic nature and carbon (C) sink capacity of the ecosystem. (C) 2019 Elsevier B.V. All rights reserved.
机译:能量(光合作用[PAR]和紫外线[UVR]辐射)和物质(有机和无机养分)通量调节生态系统的稳定性。然而,人们对营养素输入和UVR变化的抵抗力和复原力之间潜在相互作用的基础机制了解甚少。为了评估UVR x养分之间的相互作用如何改变生态系统的稳定性,我们将来自贫营养生态系统的微生物食物网原位暴露于:(1)两种光照(UVR PAR和PAR),以及(2)四种养分(环境浓度,磷[ P],碳[C]和C x P加法)处理三周。在此期间,我们量化了群落组成和生物量,强固性P和C:P比,主要[PP]和细菌[BP]的产生,群落[CR]和细菌[BR]的呼吸,排泄的有机碳[LOCI]作为共生性浮游植物-细菌相互作用(即细菌碳需求[BCDI:EOC比率])和生态系统的代谢平衡(即[PP:R]比率)。通过电阻和回弹指数来量化在所测试的四个环境方案(即UVR,UVR x C,UVR x P和UVR x C x P)下所有响应变量的稳定性。无论考虑采用何种治疗方法,在实验期间,微生物群落都以光养菌为主。最复杂的情​​况,即UVR x C x P.降低了所有变量的电阻,除了BR和PP:R比率。尽管PP:R比率在这种情况下显示出最高的抗性,但在所有环境情况下(即净自养),其抵抗力均大于1,但在UVR x C相互作用下,随着弹性的增加,平衡向净异养性转移( PP:R <1),在出现UVR x C x P的情况下,生态系统的代谢平衡被证明具有较强的抵抗力,这主要是由于细菌呼吸的高抵抗力和共生相互作用的牢固稳定性所致。我们的结果证明,光养生物的高复原力(有利于它们比混合营养和异养生物占优势)可能导致维持生态系统的自养性质和碳(C)吸收能力。 (C)2019 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号