首页> 外文期刊>The Science of the Total Environment >Water table fluctuations control CO_2 exchange in wet and dry bogs through different mechanisms
【24h】

Water table fluctuations control CO_2 exchange in wet and dry bogs through different mechanisms

机译:地下水位波动通过不同的机制控制湿沼泽和干沼泽中的CO_2交换

获取原文
获取原文并翻译 | 示例
       

摘要

High water tables (WT) stabilise peatland carbon (C) through regulation of biogeochemical processes. The impact of peatland WT on ecosystem function, including C exchange, alters over time, and the factors that cause some peatlands to display resilience and others to undergo degradation are poorly understood. Here we use CO2 flux measurements, measured by eddy covariance, to compare ecosystem function between two raised bogs; one drainage-affected, with a deep and fluctuating water table and the other near-natural, with a shallow and stable water table. The drainage-affected bog was found to be a moderate sink for CO2 (69 g C m(-2) yr(-1)), which was 134 g C m(-2) yr(-1) less than the near-natural bog (203 g C m(-2) yr(-1)). Greater ecosystem productivity has allowed the drainage-impacted bog to act as a CO2 sink despite higher ecosystem respiration; most likely due to an increase in photosynthetic capacity caused by expansion of ericaceous shrub cover. The tolerance of the vegetation community, particularly the main peat former Empodisma robustum (Restionaceae), to low and fluctuating WT appears to have been key in allowing the site to remain a sink. Despite the current resilience of the ecosystem CO2 sink, we found gross primary production to be limited under both high and low water tables, even in a year with typical rainfall. This is best explained by the limited physiological ability of ericaceous shrubs to tolerate a fluctuating WT. As such we hypothesise that if the WT continues to drop and become even more unstable, then without further vegetation change, a reduction in gross primary production is likely which may in turn cause the site to become a source for CO2. (C) 2018 Elsevier B.V. All rights reserved.
机译:高水位(WT)通过调节生物地球化学过程来稳定泥炭地(C)。泥炭地WT对生态系统功能(包括碳交换)的影响会随着时间而改变,而导致某些泥炭地表现出弹性而其他泥炭地退化的因素却鲜为人知。在这里,我们使用通过涡度协方差测量的CO2通量测量值来比较两个凸起沼泽之间的生态系统功能。一个受排水影响,地下水位深浅且波动大,另一个接近自然,地下水位浅且稳定。发现受排水影响的沼泽是一个中等的CO2汇(69 g C m(-2)yr(-1)),比附近的CO2低134 g C m(-2)yr(-1)。自然沼泽(203 g C m(-2)yr(-1))。尽管生态系统呼吸增强,但更高的生态系统生产力使受排水影响的沼泽仍可充当CO2汇。极有可能是由于砂质灌木覆盖面积增加而引起的光合能力增加所致。植被群落,特别是主要的泥炭前强壮Empusdismarobustum(Restionaceae),对低而波动的WT的耐受性似乎是使该地点保持汇的关键。尽管目前生态系统的CO2汇具有恢复力,但我们发现即使在有典型降雨的一年中,高水位和低水位下的初级生产总值也会受到限制。最好的解释是,由于胶质灌木耐受波动的野生型的生理能力有限。因此,我们假设如果WT继续下降并变得更加不稳定,那么在没有进一步植被变化的情况下,初级生产总值可能会降低,这反过来可能导致该地点成为CO2的来源。 (C)2018 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号