首页> 外文期刊>The Science of the Total Environment >Inferring watershed hydraulics and cold-water habitat persistence using multi-year air and stream temperature signals
【24h】

Inferring watershed hydraulics and cold-water habitat persistence using multi-year air and stream temperature signals

机译:利用多年的空气和河流温度信号推断流域水力学和冷水栖息地的持久性

获取原文
获取原文并翻译 | 示例
           

摘要

Streams strongly influenced by groundwater discharge may serve as "climate refugia" for sensitive species in regions of increasingly marginal thermal conditions. The main goal of this study is to develop paired air and stream water annual temperature signal analysis techniques to elucidate the relative groundwater contribution to stream water and the effective groundwater flowpath depth. Groundwater discharge to streams attenuates surface water temperature signals, and this attenuation can be diagnostic of groundwater gaining systems. Additionally, discharge from shallow groundwater flowpaths can theoretically transfer lagged annual temperature signals from aquifer to stream water. Here we explore this concept using multi-year temperature records from 120 stream sites located across 18 mountain watersheds of Shenandoah National Park, VA, USA and a coastal watershed in Massachusetts, USA. Both areas constitute important cold-water habitat for native brook trout (Salvelinus fontinalis). Observed annual temperature signals indicate a dominance of shallow groundwater discharge to streams in the National Park, in contrast to the coastal watershed that has strong, apparently deeper, groundwater influence. The average phase lag from air to stream signals in Shenandoah National Park is 11 d; however, extended lags of approximately 1 month were observed in a subset of streams. In contrast, the coastal stream has pronounced attenuation of annual temperature signals without notable phase lag. To better understand these observed differences in signal characteristics, analytical and numerical models are used to quantify mixing of the annual temperature signals of surface and groundwater. Simulations using a total heat budget numerical model indicate groundwater-induced annual temperature signal phase lags are likely to show greater downstream propagation than the related signal amplitude attenuation. The measurement of multi-seasonal paired air and water temperatures offers great promise toward understanding catchment processes and informing current cold-water habitat management at ecologically-relevant scales.
机译:在不断增加的边际热条件下,受地下水排放影响很大的溪流可作为敏感物种的“气候避难所”。这项研究的主要目的是开发空气和河流水的年度温度信号分析技术,以阐明相对地下水对河流水的贡献以及有效的地下水流径深度。地下水向河流的排放会减弱地表水温度信号,这种衰减可以诊断地下水获取系统。此外,从浅层地下水流道排出的水在理论上可以将滞后的年度温度信号从含水层传递到流水。在这里,我们使用多年温度记录来探讨这一概念,这些温度记录来自位于美国弗吉尼亚州谢南多厄国家公园18个山区分水岭和美国马萨诸塞州沿海分水岭的120个溪流场。这两个地区都是本地河鳟(Salvelinus fontinalis)的重要冷水栖息地。观测到的年度温度信号表明,国家公园中浅层地下水向河流中的排放占主导地位,而沿海集水区对地下水的影响明显强于深层。雪兰多厄国家公园从空气到流信号的平均相位滞后为11 d;但是,在一部分水流中观察到了大约1个月的延迟。相反,沿海河流的年度温度信号衰减明显,而没有明显的相位滞后。为了更好地理解这些观测到的信号特征差异,分析模型和数值模型用于量化地表水和地下水的年度温度信号的混合。使用总热量收支数值模型进行的模拟表明,地下水引起的年温度信号相位滞后可能显示出比相关信号幅度衰减更大的下游传播。多季节成对的空气和水温的测量为了解集水过程并告知当前与生态相关的冷水生境管理提供了广阔的前景。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号