...
首页> 外文期刊>Science in China. Series C, Life sciences >Monitoring of microbial community structure and succession in the biohydrogen production reactor by denaturing gradient gel electrophoresis (DGGE)
【24h】

Monitoring of microbial community structure and succession in the biohydrogen production reactor by denaturing gradient gel electrophoresis (DGGE)

机译:通过变性梯度凝胶电泳(DGGE)监测生物氢生产反应器中的微生物群落结构和演替

获取原文
获取原文并翻译 | 示例
           

摘要

To study the structure of microbial communities in the biological hydrogen production reactor and determine the ecological function of hydrogen producing bacteria, anaerobic sludge was obtained from the continuous stirred tank reactor (CSTR) in different periods of time, and the diversity and dynamics of microbial communities were investigated by denaturing gradient gel electrophoresis (DGGE). The results of DGGE demonstrated that an obvious shift of microbial population happened from the beginning of star-up to the 28th day, and the ethanol type fermentation was established. After 28 days the structure of microbial community became stable, and the climax community was formed. Comparative analysis of 16S rDNA sequences from reamplifying and sequencing the prominent bands indicated that the dominant population belonged to low G+C Gram-positive bacteria (Clostridium sp. and Ethanologenbacterium sp.), P-proteobacteria (Acidovoraxsp.), gamma-proteobacteria (Kluyvera sp.), Bacteroides (uncultured bacterium SJA-168), and Spirochaetes (uncultured eubacterium E1-K13), respectively. The hydrogen production rate increased obviously with the increase of Ethanologenbacterium sp., Clostridium sp. and uncultured Spirochaetes after 21 days, meanwhile the succession of ethanol type fermentation was formed. Throughout the succession the microbial diversity increased however it decreased after 21 days. Some types of Clostridium sp. Acidovoraxsp., Kluyvera sp., and Bacteroides were dominant populations during all periods of time. These special populations were essential for the construction of climax community. Hydrogen production efficiency was dependent on both hydrogen producing bacteria and other populations. It implied that the co-metabolism of microbial community played a great role of biohydrogen production in the reactors.
机译:为了研究生物制氢反应器中微生物群落的结构并确定产氢细菌的生态功能,在不同时间段内从连续搅拌釜反应器(CSTR)获得了厌氧污泥,以及微生物群落的多样性和动力学。通过变性梯度凝胶电泳(DGGE)进行研究。 DGGE的结果表明,从上清开始到第28天,微生物数量发生了明显的变化,建立了乙醇型发酵。 28天后,微生物群落结构稳定,并形成了高潮群落。通过对突出条带的扩增和测序对16S rDNA序列进行的比较分析表明,优势种群属于低G + C革兰氏阳性细菌(梭状芽孢杆菌和嗜热乙醇杆菌),P变形杆菌(Acidovoraxsp。),γ变形杆菌( Kluyvera sp。),拟杆菌(未培养细菌SJA-168)和Spirochaetes(未培养真细菌E1-K13)。制氢率随着乙醇原杆菌,梭菌的增加而明显增加。 21天后,再进行未培养的螺旋藻,同时形成了连续的乙醇型发酵。在整个演替过程中,微生物多样性增加,但在21天后减少。某些梭状芽孢杆菌Acidovoraxsp。,Kluyvera sp。和Bacteroides是所有时期的主要种群。这些特殊人群对于建设高潮社区至关重要。制氢效率取决于制氢细菌和其他种群。这暗示了微生物群落的共代谢在反应器中产生生物氢起了很大的作用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号