首页> 外文期刊>Scanning >An Accurate Approximation for the Highly Efficient Sampling of Polar Scattering Angle of Electron Elastic Single-Scattering Events
【24h】

An Accurate Approximation for the Highly Efficient Sampling of Polar Scattering Angle of Electron Elastic Single-Scattering Events

机译:电子弹性单散射事件的极性散射角的高效采样的精确逼近

获取原文
获取原文并翻译 | 示例
           

摘要

In single-event Monte Carlo electron transport simulations, elastic scattering events dominate the changes in electron trajectories due to collisions. Classically, the polar scattering angle due to an elastic collision can be sampled efficiently from the screened Rutherford cross section. However, the screened Rutherford cross section fails for both high Z materials and when the incident electron energy becomes too low. Alternatively, improved simulation accuracy for electrons in all energy ranges and through all materials may be obtained by sampling directly from differential data derived from partial-wave-expansion method (PWEM) calculations based on theoretical atomic potential models. While sampling directly from wave calcula-tions will yield simulation results to the best known physical accuracy, it comes at the cost of simulation time. This is due to a sampling process that is typically more involved when compared with using the screened Rutherford cross section. In this work we present a relationship capable of repro- ducing the moments of the differential cross section derived from PWEM calculations, resulting in good preservation of forward and backscattering peaks. The relationship is di-rectly invertible and is as easily sampled as the Rutherford cross section. Most important, the data presented in this paper in combination with this relationship produce Monte Carlo simulation results which are comparable with those using the exact differential cross section from PWEM cal-culations for elements Z = 1 to 96 and for incident electron energies from 300,000 down to 50 eV.
机译:在单事件蒙特卡洛电子传输模拟中,由于碰撞,弹性散射事件主导着电子轨迹的变化。经典地,可以从屏蔽的卢瑟福横截面有效地采样由于弹性碰撞而引起的极性散射角。但是,对于两种高Z材料以及当入射电子能量变得太低时,屏蔽的卢瑟福横截面都将失效。或者,可以通过直接从基于理论原子电势模型的部分波扩展方法(PWEM)计算得出的差分数据中采样,来获得所有能量范围和所有材料中电子的改进的模拟精度。虽然直接从波动计算中采样将获得最知名的物理精度的模拟结果,但这是以模拟时间为代价的。这是由于与使用屏蔽的卢瑟福横截面相比,通常更涉及采样过程。在这项工作中,我们提出一种关系,该关系能够再现从PWEM计算得出的微分截面的弯矩,从而很好地保留了正向和反向散射峰。该关系是直接可逆的,并且像卢瑟福横截面一样容易采样。最重要的是,本文中提供的数据结合这种关系产生了蒙特卡洛模拟结果,这些结果与使用PWEM计算得出的精确微分横截面(元素Z = 1至96和入射电子能量从300,000向下)的结果可比至50 eV。

著录项

  • 来源
    《Scanning》 |2006年第6期|p.333-341|共9页
  • 作者单位

    Texas A&M University Nuclear Engineering 3133 TAMU College Station, TX 77843-3133, USA;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 光学仪器;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号