...
首页> 外文期刊>Risk analysis >An Integrated Scenario Ensemble-Based Framework for Hurricane Evacuation Modeling: Part 2-Hazard Modeling
【24h】

An Integrated Scenario Ensemble-Based Framework for Hurricane Evacuation Modeling: Part 2-Hazard Modeling

机译:基于集成场景集合的飓风疏散建模框架:第2部分-危害建模

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Hurricane track and intensity can change rapidly in unexpected ways, thus making predictions of hurricanes and related hazards uncertain. This inherent uncertainty often translates into suboptimal decision-making outcomes, such as unnecessary evacuation. Representing this uncertainty is thus critical in evacuation planning and related activities. We describe a physics-based hazard modeling approach that (1) dynamically accounts for the physical interactions among hazard components and (2) captures hurricane evolution uncertainty using an ensemble method. This loosely coupled model system provides a framework for probabilistic water inundation and wind speed levels for a new, risk-based approach to evacuation modeling, described in a companion article in this issue. It combines the Weather Research and Forecasting (WRF) meteorological model, the Coupled Routing and Excess STorage (CREST) hydrologic model, and the ADvanced CIRCulation (ADCIRC) storm surge, tide, and wind-wave model to compute inundation levels and wind speeds for an ensemble of hurricane predictions. Perturbations to WRF's initial and boundary conditions and different model physics/parameterizations generate an ensemble of storm solutions, which are then used to drive the coupled hydrologic + hydrodynamic models. Hurricane Isabel (2003) is used as a case study to illustrate the ensemble-based approach. The inundation, river runoff, and wind hazard results are strongly dependent on the accuracy of the mesoscale meteorological simulations, which improves with decreasing lead time to hurricane landfall. The ensemble envelope brackets the observed behavior while providing "best-case" and "worst-case" scenarios for the subsequent risk-based evacuation model.
机译:飓风的轨道和强度会以意想不到的方式快速变化,从而使飓风和相关危害的预测变得不确定。这种固有的不确定性通常会转化为次优的决策结果,例如不必要的疏散。因此,代表这种不确定性对于疏散计划和相关活动至关重要。我们描述了一种基于物理学的危害建模方法,该方法(1)动态说明危害成分之间的物理相互作用,并且(2)使用整体方法捕获飓风演变的不确定性。这种松散耦合的模型系统为概率的水淹和风速水平提供了一个框架,从而为基于风险的疏散建模新方法提供了一种方法,本期随附文章对此进行了介绍。它结合了天气研究和预报(WRF)气象模型,路由和多余存储耦合(CREST)水文模型以及高级循环(ADCIRC)风暴潮,潮汐和风浪模型,以计算洪水的淹没水平和风速一连串的飓风预报。对WRF的初始条件和边界条件的扰动以及不同的模型物理/参数化产生了风暴解决方案的合奏,然后将其用于驱动耦合的水文+水动力模型。以飓风伊莎贝尔(2003)为例,说明了基于整体的方法。洪水,河流径流和风灾的结果在很大程度上取决于中尺度气象学模拟的准确性,而中尺度气象学模拟的准确性随着飓风登陆提前时间的缩短而提高。整体信封将观察到的行为括起来,同时为后续的基于风险的疏散模型提供“最佳情况”和“最坏情况”方案。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号