...
首页> 外文期刊>Rheologica Acta >Measuring static yield stress of electrorheological fluids using the slotted plate device
【24h】

Measuring static yield stress of electrorheological fluids using the slotted plate device

机译:使用开槽板设备测量电流变流体的静态屈服应力

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

An electrorheological (ER) response is defined as the dramatic change in rheological properties of a suspension of small particles due to the application of a large electric field transverse to the direction of flow. ER fluids are typically composed of nonconducting or semiconducting particles dispersed in a nonconducting continuous phase. A sufficiently large electric field will cause ER fluids to solidify, giving rising to a yield stress. Many applications in torque and stress transfer devices were proposed employing the reversible yielding behavior of ER fluids. Successful applications depend on a large yield stress of ER fluids and therefore accurate measurements of the yield stress of ER fluids are required. Reported experimental yield stresses of ER fluids have been dynamic yield stresses obtained by extrapolating the shear stress–shear rate data to zero-shear rate. It would be very helpful to the understanding of ER behaviors and the applications of ER fluids to be able to measure the static yield stress of ER fluids accurately. The slotted plate technique has been shown to be a successful method to determine the static yield stress of suspensions. The values obtained via the slotted plate method are static yield stress as the platform is designed for extremely low-speed motion. In this study, we modified the slotted plate device for the application of large electric fields and measured the static yield stress of TiO2 ER fluids under various electric fields. The measured static yield stress values are also compared with the static yield stress values from a commercial rheometer.
机译:电流变(ER)响应定义为由于施加了垂直于流动方向的大电场而导致的小颗粒悬浮液的流变特性的急剧变化。 ER流体通常由分散在不导电连续相中的不导电或半导电颗粒组成。足够大的电场将导致ER流体固化,从而导致屈服应力上升。提出了利用ER流体的可逆屈服特性在扭矩和应力传递装置中的许多应用。成功的应用取决于大的ER流体屈服应力,因此需要对ER流体的屈服应力进行精确测量。已报告的ER流体实验屈服应力是通过将剪切应力-剪切速率数据外推到零剪切速率而获得的动态屈服应力。能够准确地测量ER流体的静态屈服应力,对于理解ER行为和ER流体的应用将非常有帮助。槽板技术已被证明是确定悬浮液静态屈服应力的成功方法。通过狭缝板法获得的值是静态屈服应力,因为平台设计用于极低速运动。在这项研究中,我们改进了开槽板装置的应用,以适用于大电场,并测量了TiO 2 ER流体在各种电场下的静态屈服应力。还将测得的静态屈服应力值与商用流变仪的静态屈服应力值进行比较。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号