首页> 外文期刊>Research Disclosure >FIV Friendly Thermal Mixing in an Accurate Temperature Measurement Device
【24h】

FIV Friendly Thermal Mixing in an Accurate Temperature Measurement Device

机译:FIV友好的热混合在精确的温度测量装置中

获取原文
获取原文并翻译 | 示例
           

摘要

A liquid cooling system is often used, for example in lithography such as extreme ultraviolet (EUV) lithography, to control the temperature of an apparatus or its components. Such cooling systems may, for example when used in an lithographic apparatus, be required to not be a source of significant vibrations in order for the apparatus to operate satisfactorily. Known liquid cooling systems comprise a fluid flow in pipes that provide heat transfer to and/or from the relevant components of the lithographic apparatus. A closed control loop with fluid flow may form part of the cooling system. The control loop may feature a sensor that measures the fluid temperature, and a heater which, in dependence on the measured fluid temperature, tunes the temperature of the fluid to a desired level. Accordingly, the performance of the control loop, and in turn the cooling system, is dependent on the accuracy of the temperature measurement. It is therefore important that the temperature measurement is an accurate representation of the cross-sectional mean fluid temperature. The cross-sectional mean fluid temperature may, however, not easily be measured in cases where the flow has thermal radial asymmetry. This asymmetry may be due to an asymmetric source, or an asymmetric heat transfer by the cooling system, e.g. where heat transfer is substantially confined to only one portion of the pipe. In low Reynolds number fluid flow where heat transfer mainly occurs in the thermal boundary layer, the radial asymmetry may be further enhanced due to the low amount of fluid mixing in such a flow. Known cooling systems may also have sensors mounted asymmetrically around the pipe, which causes the temperature measurement to be even less accurate. This is especially true when the sensor is positioned close to and after the heat source in the flow direction, because the flow has not yet had time to mix.
机译:通常使用液体冷却系统,例如在诸如极端紫外(EUV)光刻的光刻中,以控制装置或其部件的温度。这种冷却系统可以例如在光刻设备中使用时,需要不是显着振动的源,以便使设备令人满意地操作。已知的液体冷却系统包括管道中的流体流动,其提供传热与光刻设备的相关部件的热传递。具有流体流动的闭合控制回路可以形成冷却系统的一部分。控制回路可以具有测量流体温度的传感器,以及依赖于测量的流体温度,将流体的温度调谐到所需水平的加热器。因此,控制回路的性能和逆转冷却系统取决于温度测量的精度。因此,重要的是,温度测量是横截面平均流体温度的精确表示。然而,在流动具有热径向不对称的情况下,可以不容易测量横截面平均流体温度。该不对称性可能是由于不对称的源,或通过冷却系统的不对称传热,例如,其中热传递基本上仅限于管道的一部分。在低雷诺数流体流中,其中传热主要发生在热边界层中,由于这种流动的流体混合量的较低量,可以进一步提高径向不对称性。已知的冷却系统还可以具有在管道周围不对称安装的传感器,这导致温度测量更加准确。当传感器定位在流动方向上的热源靠近和之后的传感器靠近和之后,这尤其如此,因为流量尚未有时间混合。

著录项

  • 来源
    《Research Disclosure》 |2021年第683期|1214-1214|共1页
  • 作者

  • 作者单位
  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号