首页> 外文期刊>Renewable & Sustainable Energy Reviews >Performance of simulated flexible integrated gasification polygeneration facilities. Part A: A technical-energetic assessment
【24h】

Performance of simulated flexible integrated gasification polygeneration facilities. Part A: A technical-energetic assessment

机译:模拟柔性集成气化多联产设施的性能。 A部分:技术活力评估

获取原文
获取原文并翻译 | 示例
       

摘要

This article investigates technical possibilities and performances of flexible integrated gasification polygeneration (IG-PG) facilities equipped with CO_2 capture for the near future. These facilities can produce electricity during peak hours, while switching to the production of chemicals during off-peak hours. Several simulations were performed to investigate the influence of substituting feedstock and production on IG-PG facility output, load and efficiency. These simulations were done using a detailed AspenPlus simulation model of a Shell entrained flow gasifier combined with conversion facilities. In this model carbon-rich feedstocks (oil residues, coal and biomass) were converted to a variety of products (H_2, electricity, FT-liquids, methanol and urea) using state-of-the-art technology. The size of the gasifier was limited to the equivalent of 2000 MW_(th) II #6 coal input. Overall efficiency of the simulated non-flexible configurations to convert pure coal or pure wood pellets to electricity (40%_Hhv vs 38%_hhv), FT-liquids (60%_Hhv vs 55%_hhv), methanol (53%_hhv vs 49%Hhv) or urea (51%_hhv vs 47%_hhv) are in good agreement with the literature. Using torrefied wood pellets instead of pure wood pellets reduces the penalty drop in efficiency compared to coal. Moreover, torrefied wood pellets have superior energetic density, handling and feeding compared to wood pellets. In this analysis, the H2:CO ratio of the sweet syngas was fixed to match FT-liquids criterion. As a result, overall CO2 capture rates are low, around 56-65%, depending on the feedstock used. Still, especially with FT-liquids and methanol production, CO_2 emissions at the facility are significantly reduced; less than 20% of the carbon feedstock entering the facility is emitted with the flue gas. Applying biomass and CO_2 capture shows great opportunities to produce CO_2-neutral electricity or chemicals. When the biomass fraction exceeds 40% on an energy basis, production is CO_2-neutral, independent of what is produced. Biomass can be co-fed up till 50% on an energy basis. Higher fractions cause significant fouling on cooling equipment. A small part-load penalty is observed during the substitution of coal by biomass. When changing from pure coal to pure wood pellets, the power case suffers a 2.5% efficiency drop, while all three chemical cases have an efficiency drop of less than 1%. At the same time total output is reduced to 67-69%, mainly because of the lower energy density of biomass. By over-dimensioning the gasifier and gas cleanup and optimisation section this drop can be eliminated. The syngas can be tailored to the desired composition regardless of the used feedstock. Therefore, the chemical conversion sections only have to cope with a reduction in syngas flow and not with a change in syngas composition. Altering production between chemicals and electricity is possible, although the load of the conversion sections should remain between 40% and 100% to prevent operational problems. This gives a high degree of flexibility. Complete substitution between chemical and power production while using the same feedstock is possible for the methanol and urea cases. The FT-liquids case is restricted to 60-100% load of the chemical conversion section to prevent that the gas turbine load is reduced below 40%. The economic aspects of flexible IG-PG facilities are addressed in part B.
机译:本文研究了在不久的将来配备CO_2捕集的柔性集成气化多联产(IG-PG)设施的技术可能性和性能。这些设施可以在高峰时段发电,而在非高峰时段转换为化学药品生产。进行了几次模拟,以研究替代原料和生产对IG-PG设施的产量,负荷和效率的影响。这些模拟是使用壳牌气流床气化炉与转化设施相结合的详细AspenPlus模拟模型完成的。在该模型中,使用最先进的技术将富含碳的原料(油渣,煤和生物质)转化为多种产品(H_2,电,FT-液体,甲醇和尿素)。气化炉的大小被限制为相当于2000兆瓦(th)II#6煤炭输入。模拟的非柔性配置将纯煤或纯木屑颗粒转化为电能的总体效率(40%_Hhv vs 38%_hhv),FT-液体(60%_Hhv vs 55%_hhv),甲醇(53%_hhv vs 49% Hhv)或尿素(51%_hhv对47%_hhv)与文献相符。与煤炭相比,使用焙烤的木屑颗粒代替纯木屑颗粒可减少效率的下降。此外,与木粒相比,烘焙过的木粒具有更高的能量密度,处理和进料。在此分析中,将甜味合成气的H2:CO比固定为符合FT-液体标准。结果,根据所使用的原料,总的二氧化碳捕获率很低,大约为56-65%。尽管如此,特别是在FT液体和甲醇生产方面,该设施的CO_2排放量已大大减少;进入工厂的碳原料中只有不到20%与烟气一起排放。应用生物质和CO_2捕集显示出产生CO_2中性电力或化学物质的巨大机会。当基于能量的生物质分数超过40%时,生产将是CO_2中性的,与所生产的无关。生物质能以能量为基础最多供入50%。较高的馏分会严重冷却设备。在用生物质替代煤炭的过程中,观察到很小的部分负荷损失。从纯煤变为纯木屑颗粒时,动力箱的效率下降了2.5%,而所有三个化学箱的效率下降都小于1%。同时,总产量减少到67-69%,这主要是因为生物质的能量密度较低。通过超大型气化炉,气体净化和优化段,可以消除这种下降。不管所使用的原料如何,都可以将合成气调整为所需的组成。因此,化学转化部分仅需应对合成气流量的减少而无需应对合成气组成的改变。尽管转换部分的负荷应保持在40%到100%之间,以防止操作问题,但可以在化学药品和电力之间改变产量。这提供了高度的灵活性。对于甲醇和尿素情况,可以在使用相同原料的情况下完全替代化学生产和发电。 FT液体的情况仅限于化学转化部分的60-100%负载,以防止燃气轮机负载降低到40%以下。灵活的IG-PG设施的经济方面在B部分中讨论。

著录项

  • 来源
    《Renewable & Sustainable Energy Reviews》 |2011年第6期|p.2563-2587|共25页
  • 作者单位

    Department of Science, Technology and Society, Copernicus Institute, Utrecht University, 3584 CS Utrecht, The Netherlands;

    Department of Science, Technology and Society, Copernicus Institute, Utrecht University, 3584 CS Utrecht, The Netherlands;

    Department of Science, Technology and Society, Copernicus Institute, Utrecht University, 3584 CS Utrecht, The Netherlands;

    Department of Science, Technology and Society, Copernicus Institute, Utrecht University, 3584 CS Utrecht, The Netherlands;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    flexibility refinery biofuels biochemicals technical assessment;

    机译:柔性炼油厂生物燃料生化技术评估;
  • 入库时间 2022-08-18 01:24:29

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号