首页> 外文期刊>Renewable energy >Numerical analysis and parameters optimization of shell-and-tube heat storage unit using three phase change materials
【24h】

Numerical analysis and parameters optimization of shell-and-tube heat storage unit using three phase change materials

机译:三相相变材料管壳式储热单元的数值分析及参数优化

获取原文
获取原文并翻译 | 示例
       

摘要

In this paper, a mathematical model of shell-and-tube latent heat thermal energy storage (LHTES) unit of two-dimension of three phase change materials (PCMs) named PCM1, PCM2 and PCM3 with different high melting temperatures (983 K, 823 K and 670 K, respectively) and heat transfer fluid (HTF: air) with flowing resistance and viscous dissipation based on the enthalpy method has been developed. Instantaneous solid—liquid interface positions and liquid fractions of PCMs as well as the effects of inlet temperatures of the air and lengths of the shell-and-tube LHTES unit on melting times of PCMs were numerically analyzed. The results show that melting rates of PCM3 are the fastest and that of PCM1 are the slowest both x, r directions. It is also found that the melting times of PCM1, PCM2 and PCM3 decrease with increase in inlet temperatures of the air. Moreover, with increase in inlet temperatures of the air, decreasing degree of their melting times are different, decreasing degree of the melting time of PCM1 is the biggest and that of PCM3 is the smallest. Considering actual application of solar thermal power, we suggest that the optimum lengths are L1 = 250 mm, L2 = 400 mm, L3 = 550 mm (L= 1200 mm) which corresponds to the same melting times of PCM1, PCM2 and PCM3 are about 3230 s and inlet temperature of the air is about 1200 K. The present analysis provides theoretical guidance for designing optimization of the shell-and-tube LHTES unit with three PCMs for solar thermal power.
机译:本文建立了具有不同高熔化温度(983 K,823)的二维三相相变材料(PCM)的壳管潜热储能(LHTES)单元的数学模型,分别为PCM1,PCM2和PCM3分别使用K和670 K)以及基于焓法的具有流动阻力和粘性耗散的传热流体(HTF:空气)。数值分析了PCM的瞬时固液界面位置和液体分数,以及空气的入口温度和管式LHTES单元长度对PCM熔化时间的影响。结果表明,在x,r方向上,PCM3的熔化速度最快,而PCM1的熔化速度最慢。还发现,随着空气入口温度的增加,PCM1,PCM2和PCM3的熔化时间减少。此外,随着空气入口温度的升高,其熔融时间的降低程度是不同的,PCM1的熔融时间的降低程度最大,而PCM3的熔融时间的最小程度。考虑到太阳能的实际应用,我们建议最佳长度为L1 = 250毫米,L2 = 400毫米,L3 = 550毫米(L = 1200毫米),这对应于PCM1,PCM2和PCM3的相同熔化时间约为3230 s,空气入口温度约为1200K。本分析为具有三个用于太阳能热电的PCM的管壳式LHTES装置的设计优化提供了理论指导。

著录项

  • 来源
    《Renewable energy》 |2013年第11期|92-99|共8页
  • 作者单位

    Key Laboratory of Thermo-Fluid Science and Engineering of MOE, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China;

    Key Laboratory of Thermo-Fluid Science and Engineering of MOE, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China;

    Xi'an Research Institute of Hi-Tech, Xi'an, Shaanxi 710025, China;

    Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190, China;

    Key Laboratory of Thermo-Fluid Science and Engineering of MOE, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Solar thermal power; Phase change materials (PCMs); Numerical simulation; Enthalpy method; Latent heat thermal energy storage (LHTES);

    机译:太阳能火电;相变材料(PCM);数值模拟焓法;潜热热能存储(LHTES);
  • 入库时间 2022-08-18 00:26:10

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号