首页> 外文期刊>Renewable energy >On the generation of vorticity by force fields in rotor- and actuator flows
【24h】

On the generation of vorticity by force fields in rotor- and actuator flows

机译:在转子和执行器流中通过力场产生涡旋

获取原文
获取原文并翻译 | 示例
       

摘要

In most rotor design methods, the blade load is found by a blade element analysis in an iterative procedure with flow solvers like actuator disc and -line analyses as well as momentum balances. For the flow solvers the force field is the input. In most other aerodynamic analyses the force field is the output result instead of input. This is done by applying boundary conditions at the lifting surface with which the flow is solved and the pressure at the surface, so the load, is determined (only inviscid flows are considered here). Both approaches are consistent, but appear to differ with respect to the generation of vorticity. In the lifting surface approach, usually Helmoltz's laws are used to show that bound and free vorticity is conserved instead of being generated, while in the force field approach vorticity is generated instead of conserved. It is shown that both methods are consistent since sometimes Helmholtz's laws are incorrectly referred to. These laws have been derived in absence of non-conservative forces, while the surface pressure distribution is shown to be such a force field. Besides this, the question is discussed how a force field creates vorticity in an inviscid flow, since some papers consider viscosity to be necessary to generate vorticity. A literature study contradicts this, showing that in inviscid flows vorticity is generated by tangential pressure gradients or, equivalently, a non-uniform force field. This makes the Euler equation including the force field term well suited to express the generation of vorticity in characteristics of the force field. A comparison of the convection of vorticity in the wake of a disc, rotor blade and wing shows several differences. The azimuthal vorticity in the disc wake does not depend on vorticity conservation laws, in contrast to the axial and radial components. For a rotor and wing all components are governed by vorticity conservation.
机译:在大多数转子设计方法中,叶片载荷是通过使用流动求解器(如致动器盘和管路分析)以及动量平衡通过迭代过程中的叶片元素分析来发现的。对于流量解算器,力场是输入。在大多数其他空气动力学分析中,力场是输出结果而不是输入。这可以通过在提升表面上应用边界条件来解决,通过该边界条件可以解决流量并确定表面上的压力,从而确定负载(此处仅考虑不粘流量)。两种方法是一致的,但在涡度的产生方面似乎有所不同。在举升表面方法中,通常使用Helmoltz定律来表明束缚和自由涡旋是保守的而不是产生的,而在力场方法中是产生涡旋而不是保守的。结果表明这两种方法是一致的,因为有时会不正确地引用亥姆霍兹定律。这些定律是在没有非保守力的情况下得出的,而表面压力分布显示为这种力场。除此之外,由于一些论文认为粘度是产生涡旋所必需的,因此讨论了一个问题,即力场如何在无粘性流中产生涡旋。文献研究与此矛盾,表明在不粘流动中,涡流是由切向压力梯度或等效的非均匀力场产生的。这使得包括力场项的欧拉方程非常适合表示力场特性中涡旋的产生。圆盘,转子叶片和机翼尾流后的涡流对流的比较显示出一些差异。与轴向和径向分量相反,圆盘尾流中的方位涡度不取决于涡度守恒定律。对于旋翼和机翼,所有组件均受涡度守恒控制。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号