首页> 外文期刊>Renewable energy >Optimization of a Linear Fresnel Reflector Applying Computational Fluid Dynamics, Entropy Generation Rate and Evolutionary Programming
【24h】

Optimization of a Linear Fresnel Reflector Applying Computational Fluid Dynamics, Entropy Generation Rate and Evolutionary Programming

机译:应用计算流体力学,熵产生率和演化规划优化线性菲涅尔反射镜

获取原文
获取原文并翻译 | 示例
           

摘要

This work presents an optimization of a Linear Fresnel Reflector based on the Computational Fluid Dynamics, the Entropy Generation Rate and the Evolutionary Programming method. The objective function of the optimization process takes into account the maximization of the absorbed radiation solar flux on the receiver tube and the minimization of the total Entropy Generation Rate. A set of design equations were used to build the Linear Fresnel Reflector geometries of each one of the individuals per generation. The design equations consider, among others, a coupling between the angles and distances of the mirrors and the required geometrical parameters for the construction of the CPC secondary reflector. The Evolutionary Programming considers a small population of six individuals per generation and takes into account a search space for geometric parameters such as the aperture area, the width and the length of the mirrors. The mutation operator is applied to generate the individuals and the selection operator is applied to find the best individuals for the next generation. Seven generations were needed to find the optimal Linear Fresnel Reflector. The optimal Linear Fresnel Reflector (NN individual) presents an increase of 2.48% for the average absorbed radiation flux on the absorber tube and a decrease of 20% for the total Entropy Generation Rate, both in comparison with a prototype of a Linear Fresnel Reflector. For the absorbed radiation flux, both individuals presents the minimum values on the top side of the absorber tube (1,386 W m-2 and 1,982 W m-2 for the prototype and NN individual respectively), while the maximum values are located at the lower part of the absorber tube (7,180 W m-2 and 8,199 W m-2 for the prototype and NN individual respectively). In terms of local Entropy Generation Rate, the NN individual has a decrease of 14.6%, 60% and 36.8% of Entropy Generation Rate due to viscous dissipation, heat transfer and radiation respectively at the CPC zone in comparison with the prototype of a Linear Fresnel Reflector. Finally, the NN individual has an increase of 16.4% and 23.8%. for the thermal efficiency and the exergy efficiency, respectively. (C) 2020 Elsevier Ltd. All rights reserved.
机译:这项工作提出了基于计算流体动力学,熵产生率和进化规划方法的线性菲涅尔反射镜的优化。优化过程的目标函数考虑了接收管上吸收的辐射太阳通量的最大化和总熵产生率的最小化。一组设计方程式用于建立每一代每个人的线性菲涅尔反射镜几何形状。设计方程式尤其考虑了反射镜的角度和距离与CPC辅助反射镜构造所需的几何参数之间的耦合。进化编程考虑每代只有六个人的小种群,并考虑了几何参数(例如孔径区域,镜子的宽度和长度)的搜索空间。应用变异算子生成个体,并使用选择算子为下一代找到最佳个体。找到最佳的线性菲涅尔反射镜需要七代。与线性菲涅尔反射镜的原型相比,最佳线性菲涅尔反射镜(NN个体)的吸收管平均吸收辐射通量增加了2.48%,总熵产生率降低了20%。对于吸收的辐射通量,两个人均在吸收器管的顶部显示最小值(原型和NN个人分别为1,386 W m-2和1,982 W m-2),而最大值位于较低位置。吸收器管的一部分(原型和NN个人分别为7,180 W m-2和8,199 W m-2)。就局部熵产生率而言,与线性菲涅耳原型相比,由于CPC区域的粘性耗散,传热和辐射,NN个体的熵产生率分别下降了14.6%,60%和36.8%。反光罩。最后,NN个人的增长率分别为16.4%和23.8%。分别为热效率和火用效率。 (C)2020 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号