首页> 外文期刊>Renewable energy >Numerical analysis of hybrid photovoltaic-thermal systems utilizing different spectral bandpass filters
【24h】

Numerical analysis of hybrid photovoltaic-thermal systems utilizing different spectral bandpass filters

机译:利用不同光谱带通滤波器的混合光伏热系统的数值分析

获取原文
获取原文并翻译 | 示例
       

摘要

Hybrid photovoltaic-thermal (PV-T) solar technology can produce electricity and heat simultaneously. The intention of hybridizing PV and thermal systems is to maximize the utilization of solar irradiance on a PV cell. Typical silicon-based PV cells do not fully utilize the entire solar spectrum, and the unutilized solar spectrum is dissipated as waste heat. Consequently, this waste heat increases the PV temperature and thereby reduces the PV efficiency. In conventional hybrid PV-T systems, the thermal receiver is used to extract the waste heat from PV cells and convert them into useful heat. However, direct coupling between the PV cell and the thermal receiver limits the performance of PV-T systems because optimal operating conditions of temperature of the two subsystems differ. The thermal receiver can produce only less useful low-temperature energy because the PV cell temperature must be maintained as low as possible for high efficiency. Therefore, we studied spectral beam-splitting techniques to overcome the aforementioned limitations in conventional hybrid systems. Moreover, this approach not only reduces the waste heat dissipation in PV cells, but also substantially increases the fluid temperature of the hybridized thermal system in contrast to conventional systems. A wavelength-selective filter (WSF) is a significant component of the present design because it splits solar irradiance into transmission and reflection. The PV cell and thermal receiver can absorb solar irradiance separately and operate independently of each other. The transmission comprises a useful spectral band, visible and near-infrared, for the PV cell, whereas the reflection comprises the rest of the spectral band that is concentrated onto a solar thermal receiver. In this study, we developed a Monte Carlo ray-tracing (MCRT) model to determine the transmission and reflection of a WSF. In addition, we developed analytical models coupled with the MCRT results to calculate the efficiency of PV cell and thermal receiver separately. The daily performance of a hybrid PV-T system with various passband designs was then derived to analyze the passband effect and the seasonal effect, as well as to provide a few ideas regarding the application of WSF to the system. When the filter passband decreases from 700 to 400 nm, the annual electrical efficiency decreases from 12.3% to 7.4% but the annual thermal efficiency increases from 5.5% to 29.8%. (C) 2018 Elsevier Ltd. All rights reserved.
机译:混合光热(PV-T)太阳能技术可以同时产生电能和热量。混合光伏系统和热系统的目的是最大程度地利用光伏电池上的太阳辐射。典型的基于硅的PV电池无法完全利用整个太阳光谱,而未利用的太阳光谱会作为废热消散。因此,该废热提高了PV温度,从而降低了PV效率。在常规的混合PV-T系统中,热接收器用于从PV电池中提取废热并将其转化为有用的热量。但是,PV电池和受热器之间的直接耦合会限制PV-T系统的性能,因为两个子系统的温度的最佳运行条件不同。热接收器只能产生较少有用的低温能量,因为必须将PV电池温度保持在尽可能低的水平才能获得高效率。因此,我们研究了光谱分束技术以克服传统混合系统中的上述局限性。而且,与常规系统相比,该方法不仅减少了PV电池中的废热耗散,而且还大大提高了混合热系统的流体温度。波长选择滤光片(WSF)是本设计的重要组成部分,因为它将太阳辐照度分为透射和反射。 PV电池和受热器可以分别吸收太阳辐射,并且彼此独立运行。透射包括对PV电池有用的可见和近红外光谱带,而反射则包含集中在太阳热接收器上的其余光谱带。在这项研究中,我们开发了蒙特卡洛射线追踪(MCRT)模型来确定WSF的透射率和反射率。此外,我们开发了分析模型以及MCRT结果,以分别计算光伏电池和热接收器的效率。然后推导了具有各种通带设计的混合PV-T系统的日常性能,以分析通带效应和季节效应,并提供有关WSF在系统中应用的一些想法。当滤光器通带从700纳米降低到400纳米时,年电效率从12.3%降低到7.4%,但年热效率从5.5%增长到29.8%。 (C)2018 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号