首页> 外文期刊>Renewable energy >Insights into the influence of biomass feedstock type, particle size and feeding rate on thermochemical performances of a continuous solar gasification reactor
【24h】

Insights into the influence of biomass feedstock type, particle size and feeding rate on thermochemical performances of a continuous solar gasification reactor

机译:深入了解生物质原料类型,粒度和进料速率对连续太阳能气化反应器热化学性能的影响

获取原文
获取原文并翻译 | 示例
       

摘要

The solar-driven steam gasification of different lignocellulosic biomass feedstocks was experimentally investigated with a 1.5 kW(th) continuously particle-fed solar reactor at high temperature using real high-fiux solar radiation provided by a parabolic dish concentrator. Experiments were carried out with five carbonaceous materials under different biomass feeding rates in the range of 0.8-2.7 g/min at 1300 degrees C in order to optimize the synthesis gas production and composition. Increasing biomass feeding rate (at constant slightly over-stoichiometric steam/biomass ratio) noticeably promoted the syngas yields that reached up to 83.2 mmol/g(biomass). The syngas yield (especially H-2) was more affected by the biomass feedstock (chemical composition) than by the particle size in the considered range (0.3-4 mm). The calorific value of the biomass was solar upgraded up to 24% through the syngas produced with a carbon conversion above 90%, thereby accomplishing efficient solar energy storage into the produced syngas. Increasing the biomass feeding rate inherently shortened the solar processing duration (for a given biomass amount). Thus, the solar energy input and the heat losses were reduced while the overall syngas production capacity was increased, which in turn drastically enhanced both the thermochemical reactor efficiency arid the solar-to-fuel energy conversion efficiency with maximum values typically beyond 25%. (C) 2018 Elsevier Ltd. All rights reserved.
机译:使用抛物面碟形浓缩器提​​供的实际高通量太阳辐射,在1.5 kW(th)连续颗粒供料的太阳能反应堆中,在高温下对不同木质纤维素生物质原料的太阳能驱动的蒸汽气化进行了实验研究。为了优化合成气的生产和组成,在1300℃下以0.8-2.7 g / min范围内的不同生物量进料速率对五种含碳材料进行了实验。提高生物质进料速率(在恒定的略高于化学计量的蒸汽/生物质比的情况下)显着提高了合成气产量,最高可达83.2 mmol / g(生物质)。合成气的产量(特别是H-2)受生物质原料(化学成分)的影响要大于所考虑范围(0.3-4 mm)内的颗粒大小。通过产生的合成气在90%以上的碳转化率下,将生物质的热值提高了24%,从而实现了太阳能的高效存储。增加生物质的进料速率本质上缩短了太阳能加工的持续时间(对于给定的生物量)。因此,减少了太阳能输入和热量损失,同时提高了整体合成气的生产能力,这又大大提高了热化学反应堆的效率和太阳能到燃料的能量转换效率,最大值通常超过25%。 (C)2018 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号