...
首页> 外文期刊>Recent Patents on Space Technology >System-Level Multicriteria Modelling of Payload Operational Times for Communication Satellite Missions in LEO
【24h】

System-Level Multicriteria Modelling of Payload Operational Times for Communication Satellite Missions in LEO

机译:LEO通信卫星任务有效载荷运行时间的系统级多准则建模

获取原文
获取原文并翻译 | 示例

摘要

The spacecraft payload operational time (SPOT) is amongst the main critical design considerations that must be optimised and validated during the system engineering analysis of a spacecraft mission. This requirement becomes more demanding for a communication satellite mission that relies on the functionality of the payload for its operation and service delivery. The design principles and performance budgets of the payload module are based on the subsubsystems and subsystems that enable the mission to be accomplished. The SPOT constraint is tied to the spacecraft size, weight and power (SWAP) limitations, operational modes of the subsystems and orbital patterns where the system is being deployed. This paper presents a system-level multicriteria optimisation of POTs for communication satellite (ComSat) missions in low-Earth orbit (LEO). The parameter space investigation (PSI) method was utilised to accomplish the multicriteria optimisation of the payload power and spacecraft mass. In the multicriteria optimisation and vector investigation (MOVI) process, 2048 tests were performed and the PSI was conservatively designed to yield 658 pareto optimal solutions vectors; a pareto optimal solution of 37.119 W for the payload module yielded highly adaptive microsatellite (HAM) mass and power margin of 97.021 kg and 23.366 W respectively. The required maximum subsystem power consumption for the power-storing mode is 25.703 W. From the analysis, the solar array capability was calculated to deliver 116.828 W for the mission; this forms the beginning-of-life design point. The prototype design for the ComSat mission yielded a maximum POT of approximately 494 minutes for the onboard payload processing and communication (downlink and uplink). The findings promise to enhance the design of a reliable and capability-based payload module for real-time digital video and broadband media, mobile services, interactive data transfer and voice communication.
机译:航天器有效载荷运行时间(SPOT)是在航天器任务的系统工程分析期间必须优化和验证的主要关键设计考虑因素之一。对于依赖于有效载荷的功能进行操作和服务交付的通信卫星任务,这一要求变得更加苛刻。有效载荷模块的设计原理和性能预算基于使任务得以完成的子系统和子系统。 SPOT约束与航天器的尺寸,重量和功率(SWAP)限制,子系统的运行模式以及系统在其中部署的轨道模式有关。本文介绍了用于低地球轨道(LEO)中的通信卫星(ComSat)任务的POT的系统级多准则优化。利用参数空间研究(PSI)方法来完成有效载荷功率和航天器质量的多准则优化。在多准则优化和向量调查(MOVI)过程中,进行了2048次测试,保守地设计了PSI,以产生658个pareto最优解向量。有效载荷模块的37.119 W的最优最优解决方案分别产生了97.021 kg和23.366 W的高度自适应微卫星(HAM)质量和功率裕度。蓄电模式所需的最大子系统功耗为25.703W。根据分析,计算出的太阳能电池阵列容量可为任务提供116.828 W;而通过太阳能电池板的任务,则可达到116.828W。这形成了生命周期的设计起点。 ComSat任务的原型设计为机载有效载荷处理和通信(下行链路和上行链路)提供了大约494分钟的最大POT。这些发现有望增强用于实时数字视频和宽带媒体,移动服务,交互式数据传输和语音通信的可靠且基于功能的有效负载模块的设计。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号