首页> 外文期刊>RAIRO Operation Research >COMPARING IMPERFECTION RATIO AND IMPERFECTION INDEX FOR GRAPH CLASSES
【24h】

COMPARING IMPERFECTION RATIO AND IMPERFECTION INDEX FOR GRAPH CLASSES

机译:比较图形类的不完美率和不完美指数

获取原文
获取原文并翻译 | 示例
       

摘要

Perfect graphs constitute a well-studied graph class with a rich structure, reflected by many characterizations with respect to different concepts. Perfect graphs are, for instance, precisely those graphs G where the stable set polytope STAB(G) coincides with the fractional stable set polytope QSTAB(G). For all imperfect graphs G it holds that STAB(G) C QSTAB(G). It is, therefore, natural to use the difference between the two polytopes in order to decide how far an imperfect graph is away from being perfect. We discuss three different concepts, involving the facet set of STAB(G), the disjunctive index of QSTAB(G), and the dilation ratio of the two polytopes. Including only certain types of facets for STAB(G), we obtain graphs that are in some sense close to perfect graphs, for example minimally imperfect graphs, and certain other classes of so-called rank-perfect graphs. The imperfection ratio has been introduced by Gerke and Mc-Diarmid [12] as the dilation ratio of STAB(G) and QSTAB(G), whereas Aguilera et al. [1] suggest to take the disjunctive index of QSTAB(G) as the imperfection index of G. For both invariants there exist no general upper bounds, but there are bounds known for the imperfection ratio of several graph classes [7,12]. Outgoing from a graph-theoretical interpretation of the imperfection index, we prove that there exists no upper bound on the imperfection index for those graph classes with a known bounded imperfection ratio. Comparing the two invariants on those classes, it seems that the imperfection index measures imperfection much more roughly than the imperfection ratio; we, therefore, discuss possible directions for refinements.
机译:完美的图构成了经过充分研究的图类,具有丰富的结构,反映了不同概念的许多特征。完美的图,例如,恰好是稳定的固定多态性STAB(G)与分数稳定的固定多态性QSTAB(G)一致的那些图G。对于所有不完善的图G,它保持STAB(G)C QSTAB(G)。因此,很自然地使用两个多边形之间的差异来确定一个不完美的图形离完美还差多远。我们讨论了三个不同的概念,包括STAB(G)的构面集,QSTAB(G)的析取指数以及两个多表位的扩张率。仅包括STAB(G)的某些类型的构面,我们获得在某种意义上接近完美图的图,例如最小不完美图,以及某些其他类别的所谓的秩完美图。 Gerke和Mc-Diarmid [12]引入了不完美率作为STAB(G)和QSTAB(G)的扩张率,而Aguilera等人[12]提出。 [1]建议将QSTAB(G)的分离指数作为G的不完美指数。对于这两个不变量,都没有一般的上限,但是对于几个图类的不完美率存在界限[7,12]。从对缺陷指数的图论解释中得出的结论,我们证明了那些具有已知有限缺陷率的图类在缺陷指数上不存在上限。比较这两个类别上的两个不变量,似乎不完美指数比不完美率更粗略地衡量了不完美。因此,我们讨论了可能的改进方向。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号