首页> 外文期刊>Radio Science >Importance of data assimilation technique in defining the model drivers for the space weather specification of the high-latitude ionosphere
【24h】

Importance of data assimilation technique in defining the model drivers for the space weather specification of the high-latitude ionosphere

机译:数据同化技术在定义高纬度电离层空间天气规范的模型驱动因素中的重要性

获取原文
获取原文并翻译 | 示例
           

摘要

The high-latitude ionosphere is a dynamic region in the solar-terrestrial system. The disturbances in this region can adversely affect numerous military and civilian systems, and the accurate specification and forecast of its plasma and electrodynamic structures are important for space weather research. Presently, most of the space weather models use limited observations and/or indices to define a set of empirical drivers for physical models forward in time. The empirical drivers have a "climatological" nature, and there are significant physical inconsistencies among various empirical drivers. Therefore, the specifications of high-latitude environment from these space weather models cannot truthfully reflect the weather features. Utah State University (USU) has developed a data assimilation model for the high-latitude ionosphere plasma dynamics and electrodynamics to overcome these hurdles. With a set of physical models and an ensemble Kalman filter, the model can define the drivers that are most truthful to the real space environment by ingesting data from multiple observations. In this paper, we will provide the details on how the model drivers truthful to real space weather are defined in the developed USU data assimilation model and show the space weather variability of the model outputs driven by these model drivers for various seasonal and geomagnetic conditions. Also, we will present preliminary results of validation and comparison studies to demonstrate that the model results with the optimal magnetospheric drivers determined by data assimilation are the better representations of real space environment.
机译:高纬度电离层是日地系统的动态区域。该地区的干扰可能会对许多军事和民用系统产生不利影响,其等离子体和电动结构的准确规格和预报对于太空天气研究至关重要。当前,大多数空间天气模型使用有限的观测值和/或指数来为物理模型及时定义一组经验驱动因素。经验驱动因素具有“气候”性质,并且各种经验驱动因素之间存在明显的物理不一致。因此,来自这些空间天气模型的高纬度环境指标无法如实反映天气特征。犹他州立大学(USU)开发了一种针对高纬度电离层等离子体动力学和电动力学的数据同化模型,以克服这些障碍。借助一组物理模型和集成卡尔曼滤波器,该模型可以通过吸收来自多个观测值的数据来定义对真实空间环境最真实的驱动程序。在本文中,我们将提供详细信息,说明如何在已开发的USU数据同化模型中定义对真实空间天气真实的模型驱动程序,并显示这些模型驱动程序在各种季节和地磁条件下驱动的模型输出的空间天气变异性。此外,我们将提供验证和比较研究的初步结果,以证明具有由数据同化确定的最佳磁层驱动器的模型结果是真实空间环境的更好表示。

著录项

  • 来源
    《Radio Science》 |2012年第4期|p.RS0L24.1-RS0L24.8|共8页
  • 作者单位

    Center for Atmospheric and Space Sciences, Utah State University, Logan, UT 84321, USA;

    Center for Atmospheric and Space Sciences, Utah State University,Logan, Utah, USA;

    Center for Atmospheric and Space Sciences, Utah State University,Logan, Utah, USA;

    Center for Atmospheric and Space Sciences, Utah State University,Logan, Utah, USA;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号