首页> 外文期刊>Radiation Protection Dosimetry >ANDI-03: A GENETIC ALGORITHM TOOL FOR THE ANALYSIS OF ACTIVATION DETECTOR DATA TO UNFOLD HIGH-ENERGY NEUTRON SPECTRA
【24h】

ANDI-03: A GENETIC ALGORITHM TOOL FOR THE ANALYSIS OF ACTIVATION DETECTOR DATA TO UNFOLD HIGH-ENERGY NEUTRON SPECTRA

机译:ANDI-03:遗传算法工具,用于分析展开的高能中子谱的激活检测器数据

获取原文
获取原文并翻译 | 示例
           

摘要

The thresholds of (n,xn) reactions in various activation detectors are commonly used to unfold the neutron spectra covering a broad energy span, i.e. from thermal to several hundreds of MeV. The saturation activities of the daughter nuclides (i.e. reaction products) serve as the input data of specific spectra unfolding codes, such as SAND-II and LOUHI-83. However, most spectra unfolding codes, including the above, require an a priori (guess) spectrum to starting up the unfolding procedure of an unknown spectrum. The accuracy and exactness of the resulting spectrum primarily depends on the subjectively chosen guess spectrum. On the other hand, the Genetic Algorithm (GA)-based spectra unfolding technique ANDI-03 (Activation-detector Neutron DIfferentiation) presented in this report does not require a specific starting parameter. The GA is a robust problem-solving tool, which emulates the Darwinian Theory of Evolution prevailing in the realm of biological world and is ideally suited to optimise complex objective functions globally in a large multidimensional solution space. The activation data of the ~(27)Al(n,α)~(24)Na, ~(116)In(n,γ)~(116m)In, ~(12)C(n,2n)~(11)C and ~(209)Bi(n,xn)~(210-x)Bi reactions recorded at the high-energy neutron field of the ISIS Spallation source (Rutherford Appleton Laboratory, UK) was obtained from literature and by applying the ANDI-03 GA tool, these data were used to unfold the neutron spectra. The total neutron fluence derived from the neutron spectrum unfolded using GA technique (ANDI-03) agreed within ±6.9% (at shield top level) and ±27.2% (behind a 60 cm thick concrete shield) with the same unfolded with the SAND-II code.
机译:各种激活检测器中的(n,xn)反应阈值通常用于展开涵盖较宽能量范围(即从热到数百MeV)的中子光谱。子核素(即反应产物)的饱和活性用作特定光谱展开码(例如SAND-II和LOUHI-83)的输入数据。但是,包括上述在内的大多数频谱展开代码都需要先验(猜测)频谱来启动未知频谱的展开过程。所得频谱的准确性和准确性主要取决于主观选择的猜测频谱。另一方面,本报告中介绍的基于遗传算法(GA)的光谱展开技术ANDI-03(激活检测器中子扩散)不需要特定的起始参数。遗传算法是一个强大的问题解决工具,它可以模拟生物世界中流行的达尔文进化论,并且非常适合在大型多维解决方案空间中全局优化复杂的目标函数。 〜(27)Al(n,α)〜(24)Na,〜(116)In(n,γ)〜(116m)In,〜(12)C(n,2n)〜(11)的活化数据ISIS散裂源(英国卢瑟福·阿普尔顿实验室)的高能中子场记录的)C和〜(209)Bi(n,xn)〜(210-x)Bi反应是从文献中获得并通过应用ANDI获得的-03 GA工具将这些数据用于展开中子光谱。使用GA技术(ANDI-03)展开的中子光谱得出的总中子通量在±6.9%(在屏蔽层最高水平)和±27.2%(在60 cm厚的混凝土屏蔽层后面)的范围内,而用SAND-展开后II代码。

著录项

  • 来源
    《Radiation Protection Dosimetry》 |2004年第4期|p.249-254|共6页
  • 作者

    Bhaskar Mukherjee;

  • 作者单位

    Deutsches Elektronen-Synchrotron (DESY), Notkestrasse 85, D-22607 Hamburg, Germany;

  • 收录信息 美国《科学引文索引》(SCI);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 TL72;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号