首页> 外文期刊>Progress in Nuclear Energy >Comparative review of hydrogen production technologies for nuclear hybrid energy systems
【24h】

Comparative review of hydrogen production technologies for nuclear hybrid energy systems

机译:核混合能源系统制氢技术的比较回顾

获取原文
获取原文并翻译 | 示例
           

摘要

Nuclear hybrid energy systems (NHES) have potential to capitalize on (1) producing multiple commodities, i.e. electricity and hydrogen as well as (2) allowing for electricity grid load following, with hydrogen production during low electricity prices. Using nuclear thermal energy and electricity (from the reactor itself) makes hydrogen production an economically attractive option. The reactor can continuously operate at full capacity, sending excess heat and electricity towards hydrogen production, which could either be sold or converted back to electricity using fuel cells at high price times. Several hydrogen production technologies exist, but in this study the focus is on processes that require heat and electricity. These candidates include alkaline water electrolysis, proton exchange membrane (PEM) electrolysis, solid oxide electrolysis cells (SOEC), thermochemical sulfur-iodine (S-I), calcium-bromide (Ca-Br) cycles, hybrid sulfur (HyS) and copper-chlorine (Cu-Cl) cycles. Each have different minimum temperature requirements which can be coupled to Generation III and IV reactor outlet temperatures: low (<300 degrees C), medium (<750 degrees C), and high (<950 degrees C). Energy input and material process flow diagrams were created for all technologies at compatible reactor temperatures and compared to the most common commercially operating hydrogen production method: steam methane reforming (SMR). Technology readiness levels (TRLs) and costs were also compared. The TRL of most systems is still below commercial development, and hydrogen productions costs are still too high to be economic without additional policy and/or other developments.
机译:核混合能源系统(NHES)有潜力利用(1)生产多种商品,即电力和氢气,以及(2)允许电网负荷紧随其后,并在低电价期间生产氢气。使用核能和核能(来自反应堆本身)使制氢成为经济上有吸引力的选择。该反应堆可以连续满负荷运行,将多余的热量和电能传递给氢气生产,氢气可以出售,也可以使用高价的燃料电池转化为电能。存在几种制氢技术,但在本研究中,重点是需要热量和电力的过程。这些候选产品包括碱性水电解,质子交换膜(PEM)电解,固体氧化物电解池(SOEC),热化学硫碘(SI),溴化钙(Ca-Br)循环,杂化硫(HyS)和铜氯(Cu-Cl)循环。每个都有不同的最低温度要求,这些最低温度要求可以与第三代和第四代反应堆出口温度关联:低(<300摄氏度),中(<750摄氏度)和高(<950摄氏度)。在兼容的反应器温度下为所有技术创建了能量输入和材料工艺流程图,并将其与最常见的商业化制氢方法:蒸汽甲烷重整(SMR)进行了比较。还比较了技术准备水平(TRL)和成本。大多数系统的TRL仍低于商业开发水平,如果没有其他政策和/或其他发展措施,制氢成本仍然太高,无法实现经济效益。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号