...
首页> 外文期刊>Progress in crystal growth and characterization of materials >Advancements (and challenges) in the study of protein crystal nucleation and growth; thermodynamic and kinetic explanations and comparison with small-molecule crystallization
【24h】

Advancements (and challenges) in the study of protein crystal nucleation and growth; thermodynamic and kinetic explanations and comparison with small-molecule crystallization

机译:蛋白质晶体成核和生长研究的进步(和挑战);热力学和动力学解释与小分子结晶的比较

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

This paper reviews advancements and some novel ideas (not yet covered by reviews and monographs) concerning thermodynamics and kinetics of protein crystal nucleation and growth, as well as some outcomes resulting therefrom. By accounting the role of physical and biochemical factors, the paper aims to present a comprehensive (rather than complete) review of recent studies and efforts to elucidate the protein crystallization process. Thermodynamic rules that govern both protein and small-molecule crystallization are considered firstly. The thermodynamically substantiated EBDE method (meaning equilibration between the cohesive energy which maintains the integrity of a crystalline cluster and the destructive energies tending to tear-up it) determines the supersaturation dependent size of stable nuclei (i.e., nuclei that are doomed to grow). The size of the stable nucleus is worth-considering because it is exactly related to the size of the critical crystal nucleus, and permits calculation of the latter. Besides, merely stable nuclei grow to visible crystals, and are detected experimentally. EBDE is applied for considering protein crystal nucleation in pores and hydrophobicity assisted protein crystallization. The logistic functional kinetics of nucleation (expressed as nuclei number density vs. nucleation time) explains quantitatively important aspects of the crystallization process, such as supersaturation dependence of crystal nuclei number density at fixed nucleation time and crystal size distribution (CSD) resulting from batch crystallization. It is shown that the CSD is instigated by the crystal nucleation stage, which produces an ogee-curve shaped CSD vs. crystal birth moments. Experimental results confirm both the logistic functional nucleation kinetics and the calculated CSD. And even though Ostwald ripening modifies the latter (because the smallest crystals dissolve rendering material for the growth of larger crystals), CSD during this terminal crystallization stage retains some traces of the CSD shape inherited from the nucleation stage. Another objective of this paper is to point-out some biochemical aspects of the protein crystallization, such as bond selection mechanism (BSM) of protein crystal nucleation and growth and the effect of electric fields exerted on the process. Finally, an in-silico study on crystal polymorph selection is reviewed.
机译:本文评估了关于蛋白质晶体成核和生长的热力学和动力学的进步和一些新颖的想法(尚未覆盖的评论和专着),以及由此产生的一些结果。通过考虑物理和生化因素的作用,案文件旨在满足综合(而不是完全)的审查,阐明澄清蛋白质结晶过程的研究和努力。首先考虑治理蛋白质和小分子结晶的热力学规则。热力学实质化的EBDE方法(意味着粘性能量之间的平衡,其保持结晶簇的完整性和倾向于撕裂的破坏性能量)决定了稳定核的过饱和依赖性大小(即注定要生长的核)。稳定核的尺寸是值得的,因为它与临界晶体的大小完全相关,并且允许计算后者。此外,仅仅稳定的核生长至可见晶体,并经过实验检测。 eBDE用于考虑孔和疏水性辅助蛋白质结晶的蛋白质晶体成核。成核的逻辑功能动力学(表达为核数密度与成核时间)解释了结晶过程的定量重要方面,例如晶体核数密度在固定核细胞中晶体尺寸分布(CSD)的超饱和度依赖性(CSD)引起的批次结晶。结果表明,CSD被晶体成核阶段唤起,其产生ogee曲线形状的CSD与晶体出生时刻。实验结果证实了逻辑功能成核动力学和计算的CSD。甚至奥斯特瓦德成熟修改后者(因为最小的晶体溶解渲染材料的较大晶体的生长),在该末端结晶阶段期间的CSD保留了从成核阶段遗传的一些CSD形状的痕量。本文的另一个目的是指出蛋白质结晶的一些生化方面,例如蛋白质晶体成核和生长的粘合选择机制(BSM),并且电场在该过程中施加的效果。最后,回顾了关于晶体多晶型选择的硅基研究。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号