首页> 外文期刊>Proceedings of the National Academy of Sciences of the United States of America >The base excision repair enzyme MED1 mediates DNA damage response to antitumor drugs and is associated with mismatch repair system integrity
【24h】

The base excision repair enzyme MED1 mediates DNA damage response to antitumor drugs and is associated with mismatch repair system integrity

机译:碱基切除修复酶MED1介导DNA对抗肿瘤药物的损伤反应,并与错配修复系统完整性相关

获取原文
获取原文并翻译 | 示例
       

摘要

Cytotoxicity of methylating agents is caused mostly by methyl-ation of the O~6 position of guanine in DNA to form O~6-methyl-guanine (O~6-meG). O~6-meG can direct misincorporation of thymine during replication, generating O~6-meG:T mismatches. Recognition of these mispairs by the mismatch repair (MMR) system leads to cell cycle arrest and apoptosis. MMR also modulates sensitivity to other antitumor drugs. The base excision repair (BER) enzyme MED1 (also known as MBD4) interacts with the MMR protein MLH1. MED1 was found to exhibit thymine glycosylase activity on O~6-meG:T mismatches. To examine the biological significance of this activity, we generated mice with targeted inactivation of the Med1 gene and prepared mouse embryonic fibroblasts (MEF) with different Med1 genotype. Unlike wild-type and heterozygous cultures, Med1~(-/-) MEF failed to undergo G_2-M cell cycle arrest and apoptosis upon treatment with the methylating agent N-methyl-N'-nitro-N-nitrosoguanidine (MNNG). Similar results were obtained with platinum compounds' 5-fluorouracil and irinotecan. As is the case with MMR-defective cells, resistance of Med1~(-/-) MEF to MNNG was due to a tolerance mechanism because DNA damage accumulated but did not elicit checkpoint activation. Interestingly, steady state amounts of several MMR proteins are reduced in Med1~(-/-) MEF, in comparison with Med1~(+/+) and Med1~(+/-) MEF. We conclude that MED1 has an additional role in DNA damage response to antitumor agents and is associated with integrity of the MMR system. MED1 defects (much like MMR defects) may impair cell cycle arrest and apoptosis induced by DNA damage.
机译:甲基化剂的细胞毒性主要是由DNA中鸟嘌呤的O〜6位甲基化形成O〜6-甲基-鸟嘌呤(O〜6-meG)引起的。 O〜6-meG可以指导复制过程中胸腺嘧啶的错误掺入,从而产生O〜6-meG:T错配。通过错配修复(MMR)系统识别这些错配会导致细胞周期停滞和凋亡。 MMR还调节对其他抗肿瘤药物的敏感性。碱基切除修复(BER)酶MED1(也称为MBD4)与MMR蛋白MLH1相互作用。发现MED1对O〜6-meG:T错配具有胸腺嘧啶糖基化酶活性。为了检查这种活性的生物学意义,我们生成了具有针对性灭活Med1基因的小鼠,并制备了具有不同Med1基因型的小鼠胚胎成纤维细胞(MEF)。与野生型和杂合型培养不同,Med1〜(-/-)MEF经甲基化剂N-甲基-N'-硝基-N-亚硝基胍(MNNG)处理后,未能经历G_2-M细胞周期停滞和凋亡。用铂化合物的5-氟尿嘧啶和伊立替康可以得到类似的结果。与MMR缺陷细胞一样,Med1〜(-/-)MEF对MNNG的耐药性是由于耐受机制引起的,因为DNA损伤积累了但未引起检查点激活。有趣的是,与Med1〜(+ / +)和Med1〜(+/-)MEF相比,Med1〜(-/-)MEF降低了几种MMR蛋白的稳态量。我们得出结论,MED1在对抗肿瘤药物的DNA损伤反应中具有额外的作用,并且与MMR系统的完整性有关。 MED1缺陷(与MMR缺陷非常相似)可能会损害DNA损伤诱导的细胞周期停滞和凋亡。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号