首页> 外文期刊>Proceedings of the National Academy of Sciences of the United States of America >Mechanism and energetics of green fluorescent protein chromophore synthesis revealed by trapped intermediate structures.
【24h】

Mechanism and energetics of green fluorescent protein chromophore synthesis revealed by trapped intermediate structures.

机译:捕获的中间结构揭示了绿色荧光蛋白发色团合成的机理和能量学。

获取原文
获取原文并翻译 | 示例
       

摘要

Green fluorescent protein has revolutionized cell labeling and molecular tagging, yet the driving force and mechanism for its spontaneous fluorophore synthesis are not established. Here we discover mutations that substantially slow the rate but not the yield of this posttranslational modification, determine structures of the trapped precyclization intermediate and oxidized postcyclization states, and identify unanticipated features critical to chromophore maturation. The protein architecture contains a dramatic approximately 80 degrees bend in the central helix, which focuses distortions at G67 to promote ring formation from amino acids S65, Y66, and G67. Significantly, these distortions eliminate potential helical hydrogen bonds that would otherwise have to be broken at an energetic cost during peptide cyclization and force the G67 nitrogen and S65 carbonyl oxygen atoms within van der Waals contact in preparation for covalent bond formation. Further, we determine that under aerobic, but not anaerobic,conditions the Gly-Gly-Gly chromophore sequence cyclizes and incorporates an oxygen atom. These results lead directly to a conjugation-trapping mechanism, in which a thermodynamically unfavorable cyclization reaction is coupled to an electronic conjugation trapping step, to drive chromophore maturation. Moreover, we propose primarily electrostatic roles for the R96 and E222 side chains in chromophore formation and suggest that the T62 carbonyl oxygen is the base that initiates the dehydration reaction. Our molecular mechanism provides the basis for understanding and eventually controlling chromophore creation.
机译:绿色荧光蛋白已经彻底改变了细胞标记和分子标记技术,但尚未建立其自发荧光团合成的驱动力和机制。在这里,我们发现了一些突变,这些突变会大大减慢此翻译后修饰的速率,但不会减慢产量,确定捕获的前环化中间体和氧化后环化状态的结构,并鉴定出对发色团成熟至关重要的未预期特征。蛋白质结构在中央螺旋中包含一个惊人的大约80度弯曲,该弯曲将焦点集中在G67处以促进氨基酸S65,Y66和G67形成环。明显地,这些畸变消除了潜在的螺旋氢键,否则在肽环化过程中必须以高昂的代价将其破坏,并迫使范德华斯内部的G67氮和S65羰基氧原子接触以准备形成共价键。此外,我们确定在有氧而非厌氧条件下,Gly-Gly-Gly发色团序列环化并结合了一个氧原子。这些结果直接导致共轭捕获机制,其中热力学上不利的环化反应与电子共轭捕获步骤耦合,以驱动生色团成熟。此外,我们提出了发色团形成过程中R96和E222侧链的主要静电作用,并提出T62羰基氧是引发脱水反应的基础。我们的分子机制为理解和最终控制生色团的产生提供了基础。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号