首页> 外文期刊>Proceedings of the National Academy of Sciences of the United States of America >Protein engineering of cytochrome b562 for quinone binding and light-induced electron transfer.
【24h】

Protein engineering of cytochrome b562 for quinone binding and light-induced electron transfer.

机译:细胞色素b562的蛋白质工程学,用于醌结合和光诱导的电子转移。

获取原文
获取原文并翻译 | 示例
       

摘要

The central photochemical reaction in photosystem II of green algae and plants and the reaction center of some photosynthetic bacteria involves a one-electron transfer from a light-activated chlorin complex to a bound quinone molecule. Through protein engineering, we have been able to modify a protein to mimic this reaction. A unique quinone-binding site was engineered into the Escherichia coli cytochrome b(562) by introducing a cysteine within the hydrophobic interior of the protein. Various quinones, such as p-benzoquinone and 2,3-dimethoxy-5-methyl-1,4-benzoquinone, were then covalently attached to the protein through a cysteine sulfur addition reaction to the quinone ring. The cysteine placement was designed to bind the quinone approximately 10 A from the edge of the bound porphyrin. Fluorescence measurements confirmed that the bound hydroquinone is incorporated toward the protein's hydrophobic interior and is partially solvent-shielded. The bound quinones remain redox-active and can be oxidized and rereduced in a two-electron process at neutral pH. The semiquinone can be generated at high pH by a one-electron reduction, and the midpoint potential of this can be adjusted by approximately 500 mV by binding different quinones to the protein. The heme-binding site of the modified cytochrome was then reconstituted with the chlorophyll analogue zinc chlorin e(6). By using EPR and fast optical techniques, we show that, in the various chlorin-protein-quinone complexes, light-induced electron transfer can occur from the chlorin to the bound oxidized quinone but not the hydroquinone, with electron transfer rates in the order of 10(8) s(-1).
机译:绿藻和植物的光系统II中的中央光化学反应以及某些光合细菌的反应中心涉及从光活化的二氢卟酚配合物到结合的醌分子的单电子转移。通过蛋白质工程,我们已经能够修饰蛋白质以模拟该反应。通过在蛋白质的疏水内部引入半胱氨酸,将独特的醌结合位点工程化到大肠杆菌细胞色素b(562)中。然后通过对醌环的半胱氨酸硫加成反应将各种醌,例如对苯醌和2,3-二甲氧基-5-甲基-1,4-苯醌共价附于蛋白质。半胱氨酸的位置被设计成结合从结合的卟啉的边缘起大约10 A的醌。荧光测量结果证实,结合的对苯二酚被掺入蛋白质的疏水内部,并且被部分溶剂屏蔽。结合的醌保持氧化还原活性,并且可以在中性pH的两电子过程中被氧化和还原。可以在高pH下通过单电子还原生成半醌,通过将不同的醌与蛋白质结合,可以将其中点电位调节约500 mV。修饰的细胞色素的血红素结合位点然后用叶绿素类似物二氢卟酚锌e(6)重建。通过使用EPR和快速光学技术,我们发现,在各种二氢卟酚-蛋白质-醌配合物中,光诱导的电子转移可以从二氢卟酚发生到结合的氧化醌,而不会发生对苯二酚,电子转移速率约为10(8)s(-1)。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号