首页> 外文期刊>Proceedings of the National Academy of Sciences of the United States of America >Gene transfer in the evolution of parasite nucleotide biosynthesis
【24h】

Gene transfer in the evolution of parasite nucleotide biosynthesis

机译:寄生虫核苷酸生物合成进化中的基因转移

获取原文
获取原文并翻译 | 示例
       

摘要

Nucleotide metabolic pathways provide numerous successful targets for antiparasitic chemotherapy, but the human pathogen Cryptosporidium parvum thus far has proved extraordinarily refractory to classical treatments. Given the importance of this protist as an opportunistic pathogen afflicting immunosuppressed individuals, effective treatments are urgently needed. The genome sequence of C. parvum is approaching completion, and we have used this resource to critically assess nucleotide biosynthesis as a target in C. parvum. Genomic analysis indicates that this parasite is entirely dependent on salvage from the host for its purines and pyrimidines. Metabolic pathway reconstruction and experimental validation in the laboratory further suggest that the loss of pyrimidine de novo synthesis is compensated for by possession of three salvage enzymes. Two of these, uridine kinase-uracil phos-phoribosyltransferase and thymidine kinase, are unique to C parvum within the phylum Apicomplexa. Phylogenetic analysis suggests horizontal gene transfer of thymidine kinase from a proteobacterium. We further show that the purine metabolism in C. parvum follows a highly streamlined pathway. Salvage of adenosine provides C. parvum's sole source of purines. This renders the parasite susceptible to inhibition of inosine monophosphate dehydrogenase, the rate-limiting enzyme in the multistep conversion of AMP to GMP. The inosine 5' monophosphate dehydrogenase inhibitors ribavirin and mycophenolic acid, which are already in clinical use, show pronounced anticryptosporidial activity. Taken together, these data help to explain why widely used drugs fail in the treatment of cryptosporidiosis and suggest more promising targets.
机译:核苷酸的代谢途径为抗寄生虫化学疗法提供了许多成功的靶标,但是迄今为止,人类病原体小隐隐孢子虫已被证明对传统疗法具有极高的抵抗力。考虑到这种原生生物作为困扰免疫抑制个体的机会病原体的重要性,迫切需要有效的治疗方法。细小隐孢子虫的基因组序列已接近尾声,我们已利用这一资源来严格评估核苷酸的生物合成作为小隐隐孢子虫的靶标。基因组分析表明,该寄生虫的嘌呤和嘧啶完全依赖于宿主的拯救。代谢途径的重建和实验室的实验验证进一步表明,嘧啶从头合成的损失可通过拥有三种补救酶来弥补。其中的两个是尿嘧啶激酶-尿嘧啶磷酸-核糖基转移酶和胸腺嘧啶核苷激酶,对复合小叶门内的小枝C是独特的。系统发育分析表明,来自一种变形细菌的胸苷激酶的水平基因转移。我们进一步表明,小球藻中的嘌呤代谢遵循高度简化的途径。腺苷的挽救提供了小球藻的唯一嘌呤来源。这使得该寄生虫易于抑制肌苷单磷酸脱氢酶,肌苷单磷酸脱氢酶是AMP向GMP的多步转化过程中的限速酶。已经在临床上使用的肌苷5'一磷酸脱氢酶抑制剂利巴韦林和麦考酚酸显示出显着的抗隐孢子虫活性。综上所述,这些数据有助于解释为什么广泛使用的药物在治疗隐孢子虫病中失败,并提出了更有希望的目标。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号