首页> 外文期刊>Proceedings of the National Academy of Sciences of the United States of America >Long-range protein electron transfer observed at the single-molecule level: In situ mapping of redox-gated tunneling resonance.
【24h】

Long-range protein electron transfer observed at the single-molecule level: In situ mapping of redox-gated tunneling resonance.

机译:在单分子水平上观察到的远程蛋白质电子转移:氧化还原门控隧穿共振的原位作图。

获取原文
获取原文并翻译 | 示例
       

摘要

A biomimetic long-range electron transfer (ET) system consisting of the blue copper protein azurin, a tunneling barrier bridge, and a gold single-crystal electrode was designed on the basis of molecular wiring self-assembly principles. This system is sufficiently stable and sensitive in a quasi-biological environment, suitable for detailed observations of long-range protein interfacial ET at the nanoscale and single-molecule levels. Because azurin is located at clearly identifiable fixed sites in well controlled orientation, the ET configuration parallels biological ET. The ET is nonadiabatic, and the rate constants display tunneling features with distance-decay factors of 0.83 and 0.91 A(-1) in H(2)O and D(2)O, respectively. Redox-gated tunneling resonance is observed in situ at the single-molecule level by using electrochemical scanning tunneling microscopy, exhibiting an asymmetric dependence on the redox potential. Maximum resonance appears around the equilibrium redox potential of azurin with an on/off current ratio of approximately 9. Simulation analyses, based on a two-step interfacial ET model for the scanning tunneling microscopy redox process, were performed and provide quantitative information for rational understanding of the ET mechanism.
机译:根据分子布线自组装原理,设计了一种由蓝铜蛋白天青素,隧穿势垒桥和金单晶电极组成的仿生远程电子传输系统。该系统在准生物环境中足够稳定且灵敏,适合在纳米级和单分子水平上对远程蛋白质界面ET进行详细观察。因为天青蛋白以可控的方向位于清晰可辨的固定位置,所以ET结构与生物ET平行。 ET是非绝热的,并且速率常数显示H(2)O和D(2)O中的距离衰减因子分别为0.83和0.91 A(-1)的隧穿特征。通过使用电化学扫描隧道显微镜在单分子水平上原位观察到氧化还原门控隧道共振,表现出对氧化还原电势的不对称依赖性。最大共振出现在天青蛋白的平衡氧化还原电势附近,开/关电流比约为9。基于两步界面ET模型对扫描隧道显微镜氧化还原过程进行了仿真分析,并提供了合理理解的定量信息。 ET机制。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号