首页> 外文期刊>Proceedings of the National Academy of Sciences of the United States of America >Hydrophobic hydration from small to large lengthscales: Understanding and manipulating the crossover
【24h】

Hydrophobic hydration from small to large lengthscales: Understanding and manipulating the crossover

机译:从小到大尺度的疏水水合:理解和操纵交叉

获取原文
获取原文并翻译 | 示例
       

摘要

Small and large hydrophobic solutes exhibit remarkably different hydration thermodynamics. Small solutes are accommodated in water with minor perturbations to water structure, and their hydration is captured accurately by theories that describe density fluctuations in pure water. In contrast, hydration of large solutes is accompanied by clewetting of their surfaces and requires a macroscopic thermodynamic description. A unified theoretical description of these lengthscale dependencies was presented by Lum, Chandler, and Weeks [(1999) J. Phys. Chem, B 103, 4570-4577]. Here, we use molecular simulations to study lengthscale-dependent hydrophobic hydration under various thermodynamic conditions. We show that the hydration of small and large solutes displays disparate dependencies on thermodynamic variables, including pressure, temperature, and additive concentration. Understanding these dependencies allows manipulation of the small-to-large crossover lengthscale, which is nanoscopic under ambient conditions. Specifically, applying hydrostatic tension or adding ethanol decreases the crossover length to molecular sizes, making it accessible to atomistic simulations. With detailed temperature-dependent studies, we further demonstrate that hydration thermodynamics changes gradually from entropic to enthalpic near the crossover. The nanoscopic lengthscale of the crossover and its sensitivity to thermodynamic variables imply that quantitative modeling of biomolecular self-assembly in aqueous solutions requires elements of both molecular and macroscopic hydration physics. We also show that the small-to-large crossover is directly related to the Egelstaff-Widom lengthscale, the product of surface tension and isothermal compressibility, which is another fundamental lengthscale in liquids.
机译:大大小小的疏水性溶质表现出明显不同的水合热力学。小溶质容纳在水中,对水结构的扰动很小,其水合可通过描述纯水中密度波动的理论来精确捕获。相反,大溶质的水化伴随其表面的开裂,需要宏观的热力学描述。 Lum,Chandler和Weeks [(1999)J. Phys.Lett。化学,B 103,4570-4577]。在这里,我们使用分子模拟研究在各种热力学条件下依赖于长度尺度的疏水水合。我们表明,小溶质和大溶质的水合显示出对热力学变量(包括压力,温度和添加剂浓度)的完全不同的依赖性。理解这些依赖性可以操纵从小到大的交叉长度尺度,该尺度在环境条件下是纳米的。具体来说,施加静水压力或添加乙醇可减少分子大小的交换长度,使其可用于原子模拟。通过详细的温度依赖性研究,我们进一步证明了水合热力学在交叉点附近从熵逐渐变为焓。交叉的纳米级长度尺度及其对热力学变量的敏感性表明,对水溶液中生物分子自组装进行定量建模需要分子和宏观水化物理学的元素。我们还表明,从小到大的交叉与Egelstaff-Widom长度尺度直接相关,Egelstaff-Widom长度尺度是表面张力和等温压缩性的乘积,这是液体中的另一个基本长度尺度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号