首页> 外文期刊>Proceedings of the National Academy of Sciences of the United States of America >Flux control and excess capacity in the enzymes of glycolysis and their relationship to flight metabolism in Drosophila melanogaster
【24h】

Flux control and excess capacity in the enzymes of glycolysis and their relationship to flight metabolism in Drosophila melanogaster

机译:果蝇的通量控制和糖酵解酶的过剩能力及其与飞行代谢的关系

获取原文
获取原文并翻译 | 示例
       

摘要

An important question in evolutionary and physiological genetics is how the control of flux-base phenotypes is distributed across the enzymes in a pathway. This control is often related to enzyme-specific levels of activity that are reported to be in excess of that required for demand. In glycolysis, metabolic control is frequently considered vested in classical regulatory enzymes, each strongly displaced from equilibrium. Yet the contribution of individual steps to control is unclear. To assess enzyme-specific control in the glycolytic pathway, we used P-element excision-derived mutagenesis in Drosophila melanogaster to generate full and partial knockouts of seven metabolic genes and to measure tethered flight performance. For most enzymes, we find that reduction to half of the normal activity has no measurable impact on wing beat frequency. The enzymes catalyzing near-equilibrium reactions, phosphoglucose isomerase, phosphoglucomutase, and triosephosphate isomerase fail to show any decline in flight performance even when activity levels are reduced to 17% or less. At reduced activities, the classic regulatory enzymes, hexokinase and glycogen phosphorylase, show significant drops in flight performance and are nearer to saturation. Our results show that flight performance is canalized or robust to the activity variation found in natural populations. Furthermore, enzymes catalyzing near-equilibrium reactions show strong genetic dominance down to low levels of activity. This implies considerable excess enzyme capacity for these enzymes.
机译:进化和生理遗传学中的一个重要问题是,基于通量的表型的控制如何在途径中的酶之间分布。这种控制通常与酶特异性活性水平有关,据报道该酶活性水平超过需求量。在糖酵解中,代谢控制通常被认为归功于经典的调节酶,每种酶都强烈地偏离平衡状态。但是,各个步骤对控制的贡献尚不清楚。为了评估糖酵解途径中的酶特异性控制,我们在果蝇中使用了P元素切除衍生的诱变来产生7个代谢基因的全部和部分敲除,并测量了系留的飞行性能。对于大多数酶,我们发现降低至正常活性的一半不会对机翼拍频产生可测量的影响。即使活性水平降低到17%或更低,催化接近平衡反应的酶,磷酸葡萄糖异构酶,磷酸葡萄糖突变酶和磷酸三糖异构酶也不会显示出飞行性能的任何下降。在减少的活性下,经典的调节酶己糖激酶和糖原磷酸化酶显示飞行性能明显下降,并且接近饱和。我们的结果表明,对于自然种群中发现的活动变化,飞行性能具有一定的稳定性。此外,催化接近平衡反应的酶在低水平的活性下仍显示出强大的遗传优势。这暗示了这些酶的相当大的过量酶容量。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号