首页> 外文期刊>Proceedings of the National Academy of Sciences of the United States of America >Filopodia act as phagocytic tentacles and pull with discrete steps and a load-dependent velocity
【24h】

Filopodia act as phagocytic tentacles and pull with discrete steps and a load-dependent velocity

机译:丝足虫充当吞噬性触手,并以不连续的步长和依赖于负荷的速度牵拉

获取原文
获取原文并翻译 | 示例
       

摘要

Filopodia are thin, spike-like cell surface protrusions containing bundles of parallel actin filaments. So far, filopodial dynamics has mainly been studied in the context of cell motility on coverslip-adherent filopodia by using fluorescence and differential interference contrast (DIC) microscopy. In this study, we used an optical trap and interferometric particle tracking with nanometer precision to measure the three-dimensional dynamics of macrophage filopodia, which were not attached to flat surfaces. We found that filopodia act as cellular tentacles: a few seconds after binding to a particle, filopodia retract and pull the bound particle toward the cell. We observed F-actin-dependent stepwise retraction of filopodia with a mean step size of 36 nm, suggesting molecular motor activity during filopodial pulling. Remarkably, this intracellular stepping motion, which was measured at counteracting forces of up to 19 pN, was transmitted to the extracellular tracked particle via the filopodial F-actin bundle and the cell membrane. The pulling velocity depended strongly on the counteracting force and ranged between 600 nm/s at forces < 1 pN and ≈ 40 nm/s at forces > 15 pN. This result provides an explanation of the significant differences in filopodial retraction velocities previously reported in the literature. The measured filopodial retraction force-velocity relationship is in agreement with a model for force-dependent multiple motor kinetics.
机译:丝足是纤细的穗状细胞表面突起,包含平行的肌动蛋白丝束。到目前为止,主要通过使用荧光和微分干涉对比(DIC)显微镜在盖玻片粘附的丝状伪足的细胞运动的背景下研究了丝虫动力学。在这项研究中,我们使用了具有纳米精度的光阱和干涉颗粒跟踪技术来测量巨噬细胞丝状伪足的三维动力学,这些动力学未附着在平坦表面上。我们发现丝状伪足起着细胞触角的作用:与颗粒结合后几秒钟,丝状伪足缩回并将结合的颗粒拉向细胞。我们观察到丝状伪足的F-肌动蛋白依赖性逐步回缩,平均步长为36 nm,提示在丝足牵引过程中分子运动活动。值得注意的是,在高达19 pN的反作用力下测得的这种细胞内步进运动是通过丝状F-肌动蛋白束和细胞膜传递到细胞外跟踪颗粒的。牵引速度在很大程度上取决于反作用力,在力<1 pN时在600 nm / s之间,在力> 15 pN时在≈40 nm / s之间。该结果提供了先前文献中报道的丝虫退缩速度的显着差异的解释。所测得的腓re回缩力-速度关系与依赖于力的多重运动动力学模型是一致的。

著录项

相似文献

  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号