首页> 外文期刊>Proceedings of the National Academy of Sciences of the United States of America >Ambipolar-transporting coaxial nanotubes with a tailored molecular graphene-fullerene heterojunction
【24h】

Ambipolar-transporting coaxial nanotubes with a tailored molecular graphene-fullerene heterojunction

机译:具有量身定制的分子石墨烯-富勒烯异质结的双极性传输同轴纳米管

获取原文
获取原文并翻译 | 示例
       

摘要

Despite a large steric bulk of C_(60), a molecular graphene with a covalently linked C_(60) pendant [hexabenzocoronene (HBC)-C_(60); 1] self-assembles into a coaxial nanotube whose wall consists of a graphite-like π-stacked HBC array, whereas the nanotube surface is fully covered by a molecular layer of clustering C_(60). Because of this explicit coaxial configuration, the nanotube exhibits an am-bipolar character in the field-effect transistor output [hole mobility (μ_h) = 9.7 × 10~(-7) cm~2 V~(-1) s~(-1); electron mobility (μ_e) = 1.1 × 10~(-5) cm~2 V~(-1) s~(-1)] and displays a photovoltaic response upon light illumination. Successful coassembly of 1 and an HBC derivative without C_(60) (2) allows for tailoring the p heterojunction in the nanotube, so that its ambipolar carrier transport property can be optimized for enhancing the open-circuit voltage in the photovoltaic output. As evaluated by an electrodeless method called flash-photolysis time-resolved microwave conductivity technique, the intratubular hole mobility (2.0 cm~2 V~(-1) s~(-1)) of a coassembled nanotube containing 10 mol % of HBC-C_(60) (1) is as large as the intersheet mobility in graphite. The homotropic nanotube of 2 blended with a soluble C_(60) derivative [(6,6)-phenyl C_(61) butyric acid methyl ester] displayed a photovoltaic response with a much different composition dependency, where the largest open-circuit voltage attained was obviously lower than that realized by the coassembly of 1 and 2.
机译:尽管C_(60)的空间很大,但具有共价连接的C_(60)侧链的分子石墨烯[六苯并co烯(HBC)-C_(60); 1]自组装成同轴纳米管,其壁由类似石墨的π堆积HBC阵列组成,而纳米管表面完全被簇C_(60)的分子层覆盖。由于这种明显的同轴结构,纳米管在场效应晶体管输出中表现出双极特性[空穴迁移率(μ_h)= 9.7×10〜(-7)cm〜2 V〜(-1)s〜(- 1);电子迁移率(μ_e)= 1.1×10〜(-5)cm〜2 V〜(-1)s〜(-1)],并且在光照下显示出光伏响应。 1和不含C_(60)(2)的HBC衍生物的成功共组装可在纳米管中定制p / n异质结,因此可优化其双极性载流子传输特性,以增强光伏输出中的开路电压。如通过称为快速光解时间分辨微波电导率技术的无电极方法所评估的,含10 mol%HBC-的共组装纳米管的管内孔迁移率(2.0 cm〜2 V〜(-1)s〜(-1)) C_(60)(1)与石墨中的层间迁移率一样大。与可溶的C_(60)衍生物[(6,6)-苯基C_(61)丁酸甲酯]混合的2的同质纳米管显示出光伏响应,其组成依赖性大为不同,其中获得最大的开路电压明显低于1和2的组合。

著录项

  • 来源
  • 作者单位

    Nanospace Project, Exploratory Research for Advanced Technology-Solution Oriented Research for Science and Technology, Japan Science and Technology Agency, National Museum of Emerging Science and Innovation, 2-41 Aomi, Koto-ku, Tokyo 135-0064, Japan;

    Nanospace Project, Exploratory Research for Advanced Technology-Solution Oriented Research for Science and Technology, Japan Science and Technology Agency, National Museum of Emerging Science and Innovation, 2-41 Aomi, Koto-ku, Tokyo 135-0064, Japan;

    Nanospace Project, Exploratory Research for Advanced Technology-Solution Oriented Research for Science and Technology, Japan Science and Technology Agency, National Museum of Emerging Science and Innovation, 2-41 Aomi, Koto-ku, Tokyo 135-0064, Japan;

    Functional Soft Matter Engineering Laboratory, Advanced Science Institute, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan Department of Chemistry and Biotechnology, School of Engineering, and Center for NanoBio Integration, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, JapanNanospace Project, Exploratory Research for Advanced Technology-Solution Oriented Research for Science and Technology, Japan Science and Technology Agency, National Museum of Emerging Science and Innovation, 2-41 Aomi, Koto-ku, Tokyo 135-0064, Japan;

    Institute for Biological Resources and Functions, National Institute of Advanced Industrial Science and Technology, Tsukuba Central-6, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566, Japan;

    Institute of Scientific and Industrial Research, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan;

    Institute of Scientific and Industrial Research, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan;

    Institute of Scientific and Industrial Research, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan;

    International Center for Materials and Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan;

    International Center for Materials and Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan;

    Nanospace Project, Exploratory Research for Advanced Technology-Solution Oriented Research for Science and Technology, Japan Science and Technology Agency, National Museum of Emerging Science and Innovation, 2-41 Aomi, Koto-ku, Tokyo 135-0064, Japan Department of Chemistry and Biotechnology, School of Engineering, and Center for NanoBio Integration, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan;

  • 收录信息 美国《科学引文索引》(SCI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    ambipolar transport; field-effect transistor; nanotube; photovoltaic; self-assembly;

    机译:双极运输;场效应晶体管纳米管光伏自组装;
  • 入库时间 2022-08-18 00:42:10

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号